留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis

Mostafa Feyzi Ali A Mirzaei

Mostafa Feyzi, Ali A Mirzaei. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. 燃料化学学报(中英文), 2012, 40(12): 1435-1443.
引用本文: Mostafa Feyzi, Ali A Mirzaei. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. 燃料化学学报(中英文), 2012, 40(12): 1435-1443.
Mostafa Feyzi, Ali A Mirzaei. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.
Citation: Mostafa Feyzi, Ali A Mirzaei. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.

Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis

详细信息
    通讯作者:

    Mostafa Feyzi: Tel & fax: +98-831-4274559, E-mail: Dalahoo2011@yahoo.com.

  • 中图分类号: O643

Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis

  • 摘要: The 15%(Co-Mn)/TiO2,(Co/Mn=1/6) catalyst was prepared using fusion procedure and studied for the conversion of synthesis gas to C2~4 olefins. The effects of calcination conditions and operation conditions such as the H2/CO molar feed ratio at different temperatures, gas hourly space velocity (GHSV) and total reaction pressure on the catalytic performance of catalyst were investigated. The stability of the catalyst during 150 h at optimal operation conditions (t=250 ℃ H2/CO=2/1, GHSV=1 500 h-1 and p=0.3 MPa) has been investigated. It is found that this catalyst is high stable for production C2~4 olefins. Characterizations of both precursors and calcined catalysts by powder X-ray diffraction, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurement and thermal analysis methods such as thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) show that the different preparation method influences the catalyst precursor structure and morphology.
  • CHANENCHUK C A, YATES I C, SATTERFIELD C N. The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst[J]. Energy Fuels, 1991, 5(6): 847-855.
    HAGHSHENAS FARD M, MALEKI L, KHOSHNODI M, MIRZAEI A. Hydrogenation of CO over a cobalt/cerium oxide catalyst for production of lower olefin[J]. Iranian J Sci Technol, Trans B, 2004, 28: 689-693.
    PARK C, BAKER R T K. Carbon deposition on iron-nickel during interaction with ethylene-carbon monoxide-hydrogen mixtures[J]. J Catal, 2000, 190(1): 104-117.
    KLBEL H, TILLMETZ D K. Hydrocarbons and oxygen-containing compounds and catalysts therefore: US, 4177203[P].1979-12-04.
    GOTTSCHALK F M, COPPERTHWAITE R G, van der RIET M, HUTCHINGS G. Cobalt/manganese oxide water gas shift catalysts: I Competition between carbon monoxide hydrogenation and water gas shift activity[J]. Appl Catal, 1988, 38(1): 103-108.
    TAUSTER S J, FUNG S C, GARDEN R. Strong metal- support interactions group 8 noble metals supported on TiO2[J]. J Am Chem Soc, 1978, 100(1): 170-175.
    MA X, SUN Q, YING W, FANG D. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2009, 18(2): 232-236.
    COPPERWAITE R. G, HUTCHINGS G. J, van der RIET M, WOODHOUSE J. Carbon monoxide hydrogenation using manganese oxide-based catalysts: Effect of operating conditions on alkene selectivity[J]. Int Eng Chem Res, 1987, 26(5): 869-874.
    COLLEY S, COPPERTHWAITE R G, HUTCHINGS G J, van der RIET M. Carbon monoxide hydrogenation using cobalt manganese oxide catalysts: Initial catalyst optimization studies[J]. Ind Eng Chem Res, 1988, 27(1): 1339-1344.
    Van der RIET M, HUTCHINGS G J, COPPERTHWAITE R G. Selective formation of C3 hydrocarbons from CO+H2 using cobalt manganese oxide catalysts [J]. J Chem Soc Chem Commun, 1986, 98: 798-799.
    DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(1): 227-241.
    REUEL R C, BARTOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. Catal, 1984, 85(2): 78-88.
    IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium: Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224.
    MIRZAEI A A, FAIZI M, HABIBPOUR R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A, 2006, 306: 98-107.
    FEYZI M, IRANDOUST M, MIRZAEI A A. Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer–Tropsch synthesis[J]. Fuel Process Technol, 2011, 92(5): 1136-1143.
    BARRAULT J, FORQUY C, PERRICHON V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl Catal, 1983, 5(1): 119-125.
    BUKUR D B, LANG X, AKGERMAN A, FENG Z. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1997, 36(7): 2580-2587.
    KRISHNA K R, BELL A T. Estimates of the rate coefficients for chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO2[J]. J Catal, 1993, 139(1): 104-118.
    ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332.
    SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(1): 185-207.
    MORALES F, GIJZEMAN O L J, de GROOT F M F, WECKHUYSEN B M. Manganese promotion in cobalt-based Fischer-Tropsch catalysis[M].Stud Surf Sci Catal, 2004, 147: 271-276.
    MORALES F, de GROOT F M F, GLATZEL P, KLEIMENOV E, BLUHM H, HAVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. In situ soft X-ray absorption of Co/Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. J Phys Chem B, 2004, 108(41): 16201-16207.
    MORALES F, GRANDJEAN D, de GROOT F M F, STEPHAN O, WECKHUYSEN B M. Combined EXAFS and STEM-EELS study of the electronic state and location of Mn as promoter in Co-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2005, 7: 568-572.
    GRIBVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts[M]. Stud Surf Sci Catal, 2002, 144: 609-616.
    MADON R J, REYES S C, IGLESIA E. Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis[J]. J Phys Chem, 1991, 95(20): 7795-7804.
    GRIBVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts[M]. Stud Surf Sci Catal, 2002, 144: 609-616.
  • 加载中
计量
  • 文章访问数:  1647
  • HTML全文浏览量:  17
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-18
  • 修回日期:  2012-09-05
  • 刊出日期:  2012-12-31

目录

    /

    返回文章
    返回