留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二苯并噻吩及其氧化物与离子液体相互作用的理论研究

吕仁庆 林进 曲占庆

吕仁庆, 林进, 曲占庆. 二苯并噻吩及其氧化物与离子液体相互作用的理论研究[J]. 燃料化学学报(中英文), 2012, 40(12): 1444-1453.
引用本文: 吕仁庆, 林进, 曲占庆. 二苯并噻吩及其氧化物与离子液体相互作用的理论研究[J]. 燃料化学学报(中英文), 2012, 40(12): 1444-1453.
LÜ Ren-qing, LIN Jin, QU Zhan-qing. Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1444-1453.
Citation: LÜ Ren-qing, LIN Jin, QU Zhan-qing. Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1444-1453.

二苯并噻吩及其氧化物与离子液体相互作用的理论研究

详细信息
  • 中图分类号: TE624

Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids

  • 摘要: 采用密度泛函理论方法比较了DBT/DBTO2和[BMIM]+[PF6]-/[BMIM]+[BF4]-的相互作用。对最稳定的[BMIM]+[PF6]-、[BMIM]+[PF6]--DBT、[BMIM]+[PF6]--DBTO2、[BMIM]+[BF4]-、[BMIM]+[BF4]--DBT、[BMIM]+[BF4]--DBTO2进行了NBO和AIM分析。结果表明,DBT和[BMIM]+[PF6]-/[BMIM]+[BF4]-中的咪唑环彼此相互平行,NBO和AIM分析表明它们之间发生了π-π相互作用。H1'和H9'形成的F…H氢键有利于π-π堆积作用的形成。DBTO2倾向于趋近C2-H2和甲基基团形成O…H相互作用;DBTO2优先吸附在[BMIM]+[PF6]-/[BMIM]+[BF4]-。在模拟油中,[BMIM]+[PF6]-和[BMIM]+[BF4]-离子液体对DBTO2的萃取能力大于DBT,其原因是可能是DBTO2具有较大的极性和O…H与F…H的氢键作用。
  • BOSMANN A, DATSEVICH L, JESS A, LAUTER A, SCHMITZ C, WASSEERSCHEID P. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001, 23(23): 2494-2495.
    LO W-H, YANG H-Y, WEI G-T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003, 5(5): 639-642.
    WANG J-L, ZHAO D-S, ZHOU E-P, DONG Z. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007, 35(3): 293-296.
    ZHANG C, WANG F, PAN X-Y, LIU X-Q. Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. J Fuel Chem Technol, 2011, 39(9): 689-693.
    ANANTHARAJ R, BANERJEE T. Phase behavior of 1-ethyl-3-methylimidazolium thiocyanate ionic liquid with catalytic deactivated compounds and water at several temperatures: Experiments and theoretical predictions[J]. Int J Chem Eng, 2011, 2011(1):1-13.
    KUMAR A A P, BANERJEE T. Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 1-8.
    ANANTHARAJ R, BANERJEE T. Liquid-liquid equilibria for quaternary systems of imidazolium based ionic liquid + thiophene + pyridine + iso-octane at 298.15 K: Experiments and quantum chemical predictions[J]. Fluid Phase Equilib, 2011, 312(1): 20-30.
    SANTIAGO R S, SANTOS G R, AZNAR M. UNIQUAC correlation of liquid-liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 54-61.
    HANKE C G, JOHANSSON A, HARPER J B, LYNDEN-BELL R M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study[J]. Chem Phys Lett, 2003, 374(1/2): 85-90.
    KEDRA-KROLIK K, FABRICE M, JAUBERT J. Extraction of thiophene or pyridine from n-heptane using ionic liquids, gasoline and diesel desulfurization[J]. Ind Eng Chem Res, 2011, 50(4): 2296-2306.
    ANANTHARAJ R, BANERJEE T. Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids[J]. AIChE J, 2011, 57(3): 749-764.
    LU R, QU Z, YU H, WANG F, WANG S. Comparative study on interactions between ionic liquids and pyridine/hexane[J]. Chem Phys Lett, 2012, 532(4): 13-18.
    DONG K, ZHANG S, WANG D, YAO X. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A, 2006, 110(31): 9775-9782.
    HEIMER N E, del SESTO R E, MENG Z, WILKES J S, CARPER W R. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids[J]. J Mol Liq, 2006, 124(1/3): 84-95.
    BHARGAVA B L, BALASUBRAMANIAN S. Insights into the structure and dynamics of a room-temperature ionic liquid: Ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture[J]. J Phys Chem B, 2007, 111(17): 4477-4487.
    MORROW T I, MAGINN E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J Phys Chem B, 2002, 106(49): 12807-12813.
    KATSYUBA S A, DYSON P J, VANDYUKOVA E E, CHERNOVA A V, VIDIS A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate[J]. Helv Chim Acta, 2004, 87(10): 2556-2565.
    MICAELO N M, BAPTISTA A M, SOARES C M. Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field[J]. J Phys Chem B, 2006, 110(29): 14444-14451.
    TALATY E R, RAJA S, STORHAUG V J, DOLLE A, CARPER W R. Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids[J]. J Phys Chem B, 2004, 108(35): 13177-13184.
    PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244-13249.
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1): 508-517.
    DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18): 7756-7764.
    CASTELLANO O, GIMON R, SOSCUN H. Theoretical study of the σ-π and π-π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin-asphaltene stability in crude oil[J]. Energy Fuels, 2011, 25(6): 2526-2541.
    REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem Rev, 1988, 83(6): 899-926.
    BIEGLER-KONIG F, SCHONBOHM J. Update of the AIM2000 program for atoms in molecules[J]. J Comput Chem, 2002, 23(15): 1489-1494.
    BIEGLER-KONIG F, SCHONBOHM J, BAYLES D. AIM2000 - A program to analyze and visualize atoms in molecules[J]. J Comput Chem, 2001, 22(5): 545-559.
    INADA Y, ORITA H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets[J]. J Comput Chem, 2008, 29(2): 225-232.
    ROZAS I, ALKORTA I, ELGUERO J. Bifurcated hydrogen bonds: three-centered interactions[J]. J Phys Chem A, 1988, 102(48): 9925-9932.
    PADIYAR G S, SESHADRI T P. Trifurcated (four-center) hydrogen bond in solid state crystal structure of 5'-amino-5'-deoxyadenosine p-toluenesulfonate[J]. Nucleos Nucleot, 1996, 15(4): 857-865.
    SINNOKROT M O, VALEEV E F, SHERRILL C D. Estimates of the ab initio limit for π-π interactions: The benzene dimmer[J]. J Am Chem Soc, 2002, 124(36): 10887-10893.
    HUNTER C A, SANDERS J K M. The nature of π-π interactions[J]. J Am Chem Soc, 1990, 112(14): 5525-5534.
    DESIRAJU G R. Hydrogen bridges in crystal engineering: Interactions without borders[J]. Acc Chem Res, 2002, 35(7): 565-573.
    BADER R F W. A quantum theory of molecular structure and its applications[J]. Chem Rev, 1991, 91(5): 893-928.
    CHECINSKA L, GRABOWSKI S J, MALECKA M. An analysis of bifurcated H-bonds: Crystal and molecular structures of O,O-diphenyl 1-(3-phenylthioureido) pentanephosphonate and O,O-diphenyl 1-(3-phenylthioureido) butanephosphonate[J]. J Phys Org Chem, 2003, 16(4): 213-219.
    ESPINOSA E, SOUHASSOU M, LACHEKAR H, LECOMTE C. Topological analysis of the electron density in hydrogen bonds[J]. Acta Cryst, 1999, B55(4): 563-574.
    NETZEL J, van SMAALEN S. Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)[J]. Acta Cryst, 2009, B56(5): 624-638.
  • 加载中
计量
  • 文章访问数:  2028
  • HTML全文浏览量:  8
  • PDF下载量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-28
  • 修回日期:  2012-09-17
  • 刊出日期:  2012-12-31

目录

    /

    返回文章
    返回