留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇水蒸气重整制氢反应条件的优化

张磊 潘立卫 倪长军 赵生生 王树东 胡永康 王安杰 蒋凯

张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯. 甲醇水蒸气重整制氢反应条件的优化[J]. 燃料化学学报(中英文), 2013, 41(01): 116-122.
引用本文: 张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯. 甲醇水蒸气重整制氢反应条件的优化[J]. 燃料化学学报(中英文), 2013, 41(01): 116-122.
ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2013, 41(01): 116-122.
Citation: ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2013, 41(01): 116-122.

甲醇水蒸气重整制氢反应条件的优化

基金项目: 国家自然科学基金(21076206); 国家重点基础研究发展规划(973计划,2010CB732302); 国家高技术研究发展计划(863计划, 2011AA050706)。
详细信息
    通讯作者:

    潘立卫,研究员,Tel:0411-84379323;E-mail:panlw@dicp.ac.cn;王树东,研究员,Tel:0411-84379052;E-mail:wangsd@dicp.ac.cn。

  • 中图分类号: O643.32

Optimization of methanol steam reforming for hydrogen production

  • 摘要: 对共沉淀法制备的CuO/ZnO/CeO2-ZrO2催化剂在甲醇水蒸气重整制氢反应体系中的性能进行了考察,并利用统计学实验设计方法对该反应的反应条件进行了优化。选择反应温度、水醇比和甲醇气体空速为独立要因,利用全因子实验设计方法,得到反应温度对两个响应值(甲醇转化率和重整气中CO物质的量分数)的影响最为显著,甲醇气体空速对重整气中CO物质的量分数的影响最小。固定甲醇气体空速为300 h-1,利用中心旋转组合设计实验方法对反应温度和水醇比进行优化,得出当反应温度在249~258℃、水醇比在1.76~2.00时,甲醇能全部转化,重整气中CO物质的量分数小于0.5%。此模型的计算值与实验结果较为接近,表明采用统计学实验设计方法得出的结论对甲醇水蒸气重整制氢反应条件的优化具有指导意义。
  • LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.
    LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A, 2002, 234(1/2): 111-125.
    MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.
    FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.
    HUANG G, LIAW B-J, JHANG C-J, CHEN Y-Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A, 2009, 358(1): 7-12.
    潘相敏, 宋小瑜, 余瀛, 周伟, 马建新. 湿混法制备甲醇氧化重整制氢催化剂[J]. 燃料化学学报, 2005, 33(3): 339-343. (PAN Xiang-min, SONG Xiao-yu, YU Ying, ZHOU Wei, MA Jian-xin. Wet-mixed CuZnAlZr catalysts for oxidative steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 339-343.)
    AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A, 2003, 242(2): 233-245.
    CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxdiation of methanol over ZnO-supported palladium catalysts[J]. J Catal, 1998, 179(1): 150-162.
    MU X, PAN L, LIU N, ZHANG C, LI S, SUN G, WANG S. Autothermal reforming of methanol in a mini-reactor for miniature fuel cell[J]. Int J Hydrogen Energy, 2007, 32(15): 3327-3334.
    WANG C, LIU N, PAN L, WANG S, YUAN Z, WANG S. Measurement of concentration profiles over ZnO-Cr2O3/CeO2-ZrO2 monolithic catalyst in oxidative steam reforming of methanol[J]. Fuel Process Technol, 2007, 88(1): 65-71.
    LIU N, YUAN Z, WANG S, ZHANG C, WANG S, LI D. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for hydrogen production by methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6): 1643.
    LIU N, YUAN Z, WANG C, WANG S, ZHANG C, WANG S. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.
    CHEN G, YUAN Q, LI S. Microchannel reactor for methanol autothermal reforming[J]. Chin J Catal, 2002, 23(6): 491-492.
    PATEL S, PANT K K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J]. Chem Eng Sci, 2007, 62(18/20): 5436-5443.
    PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007, 88(8): 825- 832.
    ZHANG X R, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A, 2003, 194(1/2): 99-105.
    ZHANG X R, SHI P, ZHAO J, ZHAO M, LIU C. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.
    YANG H-M, LIAO P-H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J]. Appl Catal A, 2007, 317(2): 226-233.
    OGUCHI H, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Cu2O as active species in the stram reforming of methanol by CuO/ZrO2 catalysts[J]. Appl Catal A, 2005, 293(1/2): 64-70.
    TAKAHASHI T, INOUE M, KAI T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys[J]. Appl Catal A, 2001, 218(1/2): 189-195.
  • 加载中
计量
  • 文章访问数:  2283
  • HTML全文浏览量:  23
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-05
  • 修回日期:  2012-09-25
  • 刊出日期:  2013-01-31

目录

    /

    返回文章
    返回