留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥微波高温热解条件下富氢气体生成特性研究

王晓磊 邓文义 于伟超 苏亚欣

王晓磊, 邓文义, 于伟超, 苏亚欣. 污泥微波高温热解条件下富氢气体生成特性研究[J]. 燃料化学学报(中英文), 2013, 41(02): 243-251.
引用本文: 王晓磊, 邓文义, 于伟超, 苏亚欣. 污泥微波高温热解条件下富氢气体生成特性研究[J]. 燃料化学学报(中英文), 2013, 41(02): 243-251.
WANG Xiao-lei, DENG Wen-yi, YU Wei-chao, SU Ya-xin. Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. Journal of Fuel Chemistry and Technology, 2013, 41(02): 243-251.
Citation: WANG Xiao-lei, DENG Wen-yi, YU Wei-chao, SU Ya-xin. Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. Journal of Fuel Chemistry and Technology, 2013, 41(02): 243-251.

污泥微波高温热解条件下富氢气体生成特性研究

基金项目: 上海市自然科学基金(11ZR1400700)。
详细信息
    通讯作者:

    邓文义,男,博士,讲师,E-mail:dengwy@dhu.edu.cn。

  • 中图分类号: X705

Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge

  • 摘要: 分别采用单模微波炉和电加热管式炉对污泥热解过程进行了实验研究,分析了污泥粒径、含水率、热解温度和微波吸收剂形态等参数对热解产物分布特性和气体组分浓度的影响规律和机理。结果表明,在粒径0~5.00 mm,污泥粒径大小对污泥微波热解产物分布无明显影响,但粒径减小可以提高H2和CO浓度,当粒径从2.50~5.00 mm减小至小于0.45 mm,H2和CO体积分数分别从31%和17%上升至34%和22%;污泥含水率和微波热解温度对热解产物分布和热解气组分浓度分布都有显著影响,提高污泥含水率或微波热解温度都可以显著提高H2和CO浓度,当污泥含水率从0上升至83%,H2和CO体积分数分别从32%和20%上升至42%和31%;相比粉末态吸波剂,固定形态的微波吸收器可以提高挥发分向热解气的转化,提高热解气产量,同时还能略微提高H2和CO产率,但效果并不明显。
  • 毛宗强. 氢能—21世纪的绿色能源[M]. 北京: 化学工业出版社, 2005. (MAO Zong-qiang. Hydrogen energy—green energy in 21st century[M]. Beijing: Chemical Industry Press, 2005.)
    马承荣, 肖波, 陈英明, 江建方, 邹先枚. 生物质气化制取富氢燃气的实验研究[J]. 燃烧科学与技术, 2007, 13(5): 461-467. (MA Cheng-rong, XIAO Bo, CHEN Ying-ming, JIANG Jian-fang, ZOU Xian-mei. Experimental research on biomass gasification for hydrogen rich gas production[J]. Journal of Combustion Science and Technology, 2007, 13(5): 461-467.)
    DENG W-Y, YAN J-H, LI X-D, WANG F, ZHU X-W, LU S-Y, CEN K-F. Emission characteristics of volatile compounds during sludges drying process[J]. J Hazard Mater, 2009, 162(1): 186-192.
    戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 38(2): 1-5. (DAI Xiao-hu. Treatment status of urban sludge in China[J]. Water Supply and Drainage, 2012, 38(2): 1-5.)
    张钦明, 王树众, 沈林华, 段百齐. 污泥制氢技术研究进展[J]. 现代化工, 2005, 25(11): 29-32. (ZHANG Qin-ming, WANG Shu-zhong, SHEN Lin-hua, DUAN Bai-qi. Advances in production of hydrogen from sludge[J]. Modern Chemical Industry, 2005, 25(11): 29-32.)
    丁兆军, 舒新前, 白广彬. 城市污水污泥热解制氢的实验研究[J]. 武汉理工大学学报, 2006, 28(增刊): 228-232. (DING Zhao-jun, SHU Xin-qian, BAI Guang-bin. Experimental study on hydrogen production via sewage sludge pyrolysis[J]. Journal of Wuhan University of Technology, 2006, 28(zl): 228-232.)
    MENENDEZ J A, DOMINGUEZ A, INGUANZO M, PIS J J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue[J]. J Anal Appl Pyrolysis, 2005, 74(1/2): 406-412.
    DOMINGUEZ A, MENENDEZ J A, INGUANZO M, PIS J J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresour Technol, 2006, 97(10): 1185-1193.
    DOMINGUEZ A, FERNANDEZ Y, FIDALGO B. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J]. Chemosphere, 2008, 70(3): 397~403.
    王同华, 胡俊生, 夏莉, 曲新春. 微波热解污泥及产物组成的分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(4): 662-666. (WANG Tong-hua, HU Jun-sheng, XIA Li, QU Xin-chun. Pyrolysis of sewage sludge by microwave radiation[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(4): 662-666.)
    方琳, 田禹, 武伟男, 曹长玉. 微波高温热解污水污泥各态产物特性分析[J]. 安全与环境学报, 2008, 8(1): 29-33. (FANG Lin, TIAN Yu, WU Wei-nan, CAO Chang-yu. Characteristic study of the solid, liquid and gas produced by microwave pyrolysis of sewage sludge[J]. Journal of Safety and Environment, 2008, 8(1): 29-33.)
    DEMIRGAS A. Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst on hydrogen yield[J]. Energy Convers Manage, 2002, 43(7): 897-909.
    王伟, 蓝煜昕, 李明, 郑蕾, 刘世杰, 程文翰. 生物质废弃物快速热解制取富氢气体的实验研究[J]. 环境工程学报, 2007, 1(8): 114-119. (WANG Wei, LAN Yu-xin, LI Ming, ZHENG Lei, LIU Shi-jie, CHENG Wen-han. Fast pyrolysis of biomass waste for hydrogen-rich gas[J]. Chinese Journal of Environmental Engineering, 2007, 1(8): 114-119.)
    LI S, XU S, LIU S, YANG C, LU Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel Process Technol, 2004, 85(8/10): 1201-1211.
    DOMINGUEZ A, MENENDEZ J A, FERNANDEZ Y, PIS J J, VALENTE NABAIS J M, CARROTT J M, RIBEIRO CARROTT M M L. Conventional and microwave induced pyrolysis of coffee hulls for the production of hydrogen rich fuel gas[J]. J Anal Appl Pyrolysis, 2007, 79(1/2): 128-135.
    XU X, JIANG E, WANG M, LI B. Rich hydrogen production from crude gas secondary catalytic cracking over Fe/γ-Al2O3[J]. Renewable Energy, 2012, 39(1): 126-131.
    DOMINGUEZ A, MENENDEZ J A, PIS J J. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature[J]. J Anal Appl Pyrolysis, 2006, 77(2): 127-132.
    SUN J, WANG W, LIU Z, MA C. Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing[J]. Ind Eng Chem Res, 2011, 50(20): 11763-11769.
    MENENDEZ J A, DOMINGUEZ A, INGUANZO M, PIS J J. Microwave pyrolysis of sewage sludge: Analysis of the gas fraction[J]. J Anal Appl Pyrolysis, 2004, 71(2): 657-667.
  • 加载中
计量
  • 文章访问数:  1689
  • HTML全文浏览量:  29
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-28
  • 修回日期:  2012-08-28
  • 刊出日期:  2013-02-28

目录

    /

    返回文章
    返回