留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究

毛菀钰 孙启文 应卫勇 房鼎业

毛菀钰, 孙启文, 应卫勇, 房鼎业. 高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究[J]. 燃料化学学报(中英文), 2013, 41(03): 314-322.
引用本文: 毛菀钰, 孙启文, 应卫勇, 房鼎业. 高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究[J]. 燃料化学学报(中英文), 2013, 41(03): 314-322.
MAO Wan-yu, SUN Qi-wen, YING Wei-yong, FANG Ding-ye. Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(03): 314-322.
Citation: MAO Wan-yu, SUN Qi-wen, YING Wei-yong, FANG Ding-ye. Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(03): 314-322.

高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究

基金项目: 国家重点基础研究发展规划(973计划,2010CB736203);国家重点实验室开放课题(SKL-ChE-09T01)。
详细信息
    通讯作者:

    应卫勇,Tel:021-64252193,Fax:021-64252193,E-mail:wying@ecust.edu.cn。

  • 中图分类号: TQ032.4;TQ203.2

Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts

  • 摘要: 采用漫反射原位红外光谱法及化学捕获方法,考察了费托合成过程中高温沉淀铁基催化剂表面吸附物种的变化,并探讨了含氧化合物的生成机理。结果表明,CO在高温沉淀铁基催化剂上有线式和桥式两种吸附态存在,同时,CO的吸附在催化剂表面生成大量含氧化合物前驱体。费托原位实验捕获到了一些较关键的中间产物:表面乙酸盐、表面酰基、甲氧基等。同时发现高温沉淀铁基催化剂表面具有以下反应共性:醇类可与表面羟基结合生成烷氧基团;催化剂表面的吸附分子具有氧化性;一些基础化学物质如OH-、晶格氧等可以与甲醇或乙醛分子发生反应。对CH3OH + CO及CH3I + CO + H2两个反应的化学捕获实验表明,酰基是C2+含氧化合物的重要中间产物,酰基加氢是形成C2+含氧化合物的关键步骤。根据表面中间产物及反应特性,得到了高温沉淀铁基催化剂上费托合成含氧化合物的生成机理。
  • ICHIKAWA M, FUKUSHIMA T. Mechanism of syngas conversion into C2-oxygenates such as ethanol catalysed on a SiO2-supported Rh-Ti catalyst[J]. J Chem Soc Chem Commun, 1985, (6): 321-323.
    PIJOLAT M, PERRICHON V. Synthesis of alcohols from CO and H2 on a Fe/A12O3 catalyst at 8-30 bars pressure[J]. Appl Catal, 1985, 13(2): 321-333.
    TAKEUCHI A, KATZER J R. Mechanism of methanol formation[J]. J Phys Chem, 1981, 85(8): 937-939.
    KIENNEMANN A, DIAGNE C, HINDERMANN J P, CHAUMETTE P, COURTY P H. Higher alcohols synthesis from CO+2H2 on cobalt-copper catalyst: Use of probe molecules and chemical trapping in the study of the reaction mechanism[J]. Appl Catal, 1989, 53(2/3): 197-216.
    ORITA H, NAITO S, TAMARU K. Mechanism of acetaldehye formation from the carbon monoxide-hydrogen reaction below atmospheric pressure over supported Rh catalysts[J]. J Chem Soc Chem Commun, 1984, (1): 150-151.
    周朝辉, 高景星. 重氧水和合成气与卡宾簇合物的模型反应研究铑催化剂乙醇合成机理[J]. 分子催化, 1990, 4(3): 256-257. (ZHOU Chao-hui, GAO Jing-xing. Model reactions of supported carbene cluster with D2O or D218O and syngas for mechanism study of Rh-catalyzed ethanol synthesis[J]. Journal of Molecular Catalysis(China), 1990, 4(3): 256-257.)
    孙启文, 蒋凡凯, 杨文书, 刘晓莉. 一种高温费托合成铁基催化剂及其制备方法: 中国, 1695803A. 2005-11-16. (SUN Qi-wen, JIANG Fan-kai, YANG Wen-shu, LIU Xiao-li. A high-temperature iron-based catalyst for Fischer-Tropsch synthesis and its preparation method: CN, 1695803A. 2005-11-16.)
    LAVALLEY J C, SAUSSEY J, LAMOTTE J. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. J Phys Chem, 1990, 94(15): 5941-5947.
    SHEPPARD N, NGUYEN T T. Advances in infrared and roman spectroscopy[M]. New York: Wiley-Interscience, 1978.
    ZHANG C-H, YANG Y, TENGA B-T, LI T-Z, ZHENG H-Y, XIANG H-W, LI Y-W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2): 405-415.
    CHAFIK T, DULAURENT O, GASS J T, BIANCHI D. Heat of adsorption of carbon monoxide on a Pt/Rh/CeO2/Al2O3three-way catalyst using in-situ infrared spectroscopy at high temperatures[J]. J Catal, 1998, 179(2): 503-514.
    SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: A diffuse reflectance FTIR study: Part I Identification of surface species and methanation reactions on palladium/zirconia catalysts[J]. J Mol Catal, 1990, 63(2): 223-242.
    WEIGEL J, KOEPPEL R A, BAIKER A, WOKAUN A. Surface species in CO and CO2 hydrogenation over copper/zirconia: On the methanol synthesis mechanism[J]. Langmuir, 1996, 12(22): 5319-5329.
    CLARKE D B, LEE D K, SANDOVAL M J, BELL A T. Infrared studies of the mechanism of methanol decomposition on Cu/SiO2[J]. J Catal, 1994, 150(1): 81-93.
    MA Z, YANG C, WEI W, LI W, SUN Y. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation [J]. J Mol Catal, 2005, 231(1/2): 75-81.
    DAVIS J L, BARTEAU M A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111)[J]. Surf Sci, 1990, 235(2/3): 235-248.
    SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: A diffuse reflectance FTIR study: Part II Surface species on copper/zirconia catalysts: Implications for methanol synthesis selectivity[J]. J Mol Catal, 1990, 63(2): 243-254.
    GREENLER R G. An infrared investigation of xanthate adsorption by lead sulfide[J]. J Chem Phys, 1962, 66(5): 879-883.
    SILVA A M, SOUZA K R, JACOBS G, GRAHAM U M, DAVIS B H, MATTOS L V, NORONHA F B. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst[J]. Appl Catal A, 2011, 102(1/2): 94-109.
    PETKOVIC L M, RASHKEEV S N, GINOSAR D M. Ethanol oxidation on metal oxide-supported platinum catalysts[J]. Catal Today, 2009, 147(2): 107-114.
    DOMOK M, TOTH M, RASKO J, ERDOHELYI A. Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts[J]. Appl Catal B, 2007, 69(3/4): 262-272.
    ZAMBONI V, ZERBI G. Vibrational spectrum of a new crystalline modification of polyoxymethylene[J]. J Polym Sci, 1964, 7(1): 153-161.
    EVANS J C, BERNSTEIN H J. The vibrational spectra of acetaldehyde and acetaldehyde-d1[J]. Can J Chem, 1956, 34(8): 1083-1092.
    DEMRI D, HINDERMANN J P, DIAGNE C, KIENNEMANN A. Formation of C2 oxygenates on rhodium-containing catalysts during CO + H2 reactions. FTIR study of acetaldehyde adsorption[J]. J Chem Soc Faraday Trans, 1994, 90(3): 501-506.
    HE Y, JI H. In-situ DRIFTS study on catalytic oxidation of formaldehyde over Pt/TiO2 under mild conditions[J]. Chin J Catal, 2010, 31(2): 171-175.
    EI-SAYED Y, BANDOSZ T J. A study of acetaldehyde adsorption on activated carbons[J]. J Coll Interf Sci, 2001, 242(1): 44-51.
    BUSCA G, LORENZELLI V. Infrared study of methanol, formaldehyde, and formic acid adsorbed on hematite[J]. J Catal, 1980, 66(1): 155-161.
    ANTON A B, PARMETER J E, WEINBERG W H. Adsorption of formaldehyde on the Ru(001) and Ru(001)-p(2.times. 2)O surfaces [J]. J Am Chem Soc, 1986, 108(8): 1823-1833.
    DEMRI D, CHATEAU L, HINDERMANN J P, KIENNEMANN A, BETTAHAR M M. C1-oxygenated molecules adsorbed on rhodium containing catalysts. Identification of a formyl species[J]. J Mol Catal, 1996, 104(3): 237-249.
    IDRISS H, HINDERMANN J P, KIEFFER R. Characterization of dioxymethylene species over Cu-Zn catalysts[J]. J Mol Catal, 1987, 42(2): 205-213.
    CHUDEK J A, MCQUIRE M W, MCQUIRE G W, ROCHESTER C H. In situ FTIR study of CO-H2 reactions over RH/TiO2 catalysts at high pressure and temperature[J]. J Chem Soc Faraday Trans, 1994, 90(24): 3699-3709.
    应卫勇, 曹发海, 房鼎业. 碳一化工主要产品生产技术[M]. 北京: 化学工业出版社, 2004. (YING Wei-yong, CAO Fa-hai, FANG Ding-ye. Major products and technology in C1 chemical industry[M]. Beijing: Chemical Industry Press, 2004.)
    VEDAGE G A, HERMAN R G, KLIER K. Chemical trapping of surface intermediates in methanol synthesis by amines[J]. J Catal, 1985, 95(2): 423-434.
    LAVALLEY J C, SAUSSEY J, RAIS T. Infrared study of the interaction between CO and H2 on ZnO: Mechanism and sites of formation of formyl species[J]. J Mol Catal, 1982, 17(2/3): 289-298.
    SAUSSEY J, LAVALLEY J C, RAIS T, CHAKOR-ALAMI A, HINDERMANN J P, KIENNEMANN A. The formation of formyl species from CO + H2 on ZnO: Evidence and comparative study using IR spectroscopy and chemical trapping[J]. J Mol Catal, 1984, 26(1): 159-163.
    SARKAR A, KEOGH R A, BAO S, DAVIS B H. Fischer–Tropsch synthesis with promoted iron catalyst: Reaction pathways for acetic acid, glycol, 2-ethoxyethanol and 1,2-diethoxyethane[J]. Appl Catal A, 2008, 341(1/2): 146-153.
    PICHLER H, SCHULZ H. Neuere erkenntnisse auf dem gebiet der synthese von kohlenwasserstoffen aus CO und H2[J]. Chem Ing Tech, 1970, 42(18): 1162-1174.
    JOHNSTON O, JOYNER R W. Structure-function relationships in heterogeneous catalysis: The embedded surface molecule approach and its applications[M]. Stud Surf Sci Catal, 1993, 75: 165-180.
    FORSTER D. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes[J]. Adv Organomet Chem, 1979, 17: 255-267.
    ZHANG X, LIU Y, LIU G, TAO K, LIN Q, MENG F, WANG D, TSUBAKI N. Product distributions including hydrocarbon and oxygenates of Fischer-Tropsch synthesis over mesoporous MnO2-supported Fe catalyst[J]. Fuel, 2012, 92(1): 122-129.
    MARK A B, STEVEN S C, SCOTT A H. Dynamic and kinetic modeling of isotopic transient responses for CO insertion on Rh and Mn–Rh catalysts[J]. Catal Today, 1998, 44(1/4): 151-163.
    KIENNEMANN A, BREAULT R, HINDERMANN J P. Ethanol promotion by the addition of cerium to rhodium–silica catalysts[J]. J Chem Soc Faraday Trans, 1987, 83(7): 2119-2128.
    BREAULT R, HINDERMANN J P, KIENNEMANN A, LAURIN M. CO + H2 reactions on rhodium catalysts: Study of the Reactivity and mechanism[M]. Stud Surf Sci Catal, 1984, 19: 489-496.
    CHATEAU L, HINDERMANN J P, KIENNEMANN A, TEMPESTI E. On the mechanism of carbonylation in acetic acid and higher acid synthesis from methanol and syngas mixtures on supported rhodium catalysts[J]. J Mol Catal, 1996, 107(1/3): 367-378.
  • 加载中
计量
  • 文章访问数:  1796
  • HTML全文浏览量:  43
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-12
  • 修回日期:  2012-12-25
  • 刊出日期:  2013-03-30

目录

    /

    返回文章
    返回