留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双酸体系下有序介孔SO42-/ZrO2-SiO2材料的合成

于峰 郭敏 王旭 潘大海 李瑞丰

于峰, 郭敏, 王旭, 潘大海, 李瑞丰. 双酸体系下有序介孔SO42-/ZrO2-SiO2材料的合成[J]. 燃料化学学报(中英文), 2013, 41(04): 456-462.
引用本文: 于峰, 郭敏, 王旭, 潘大海, 李瑞丰. 双酸体系下有序介孔SO42-/ZrO2-SiO2材料的合成[J]. 燃料化学学报(中英文), 2013, 41(04): 456-462.
YU Feng, GUO Min, WANG Xu, PAN Da-hai, LI Rui-feng. Synthesis of well-ordered SO42-/ZrO2-SiO2 materials in bi-acid system[J]. Journal of Fuel Chemistry and Technology, 2013, 41(04): 456-462.
Citation: YU Feng, GUO Min, WANG Xu, PAN Da-hai, LI Rui-feng. Synthesis of well-ordered SO42-/ZrO2-SiO2 materials in bi-acid system[J]. Journal of Fuel Chemistry and Technology, 2013, 41(04): 456-462.

双酸体系下有序介孔SO42-/ZrO2-SiO2材料的合成

基金项目: Supported by the Natural Science Foundation of China (NSFC, 50772070, 51172154), the Research Fund for the Doctoral Program of Higher Education (20121402120011) and the Science and technological program of Shanxi Province (20110008)
详细信息
  • 中图分类号: O643.3, TQ127.2

Synthesis of well-ordered SO42-/ZrO2-SiO2 materials in bi-acid system

  • 摘要: 采用一锅合成法通过调变自组装过程中硫酸和盐酸的体积比,成功制备了系列介孔SO42-/ZrO2-SiO2固体酸材料(Zr/Si物质的量为1.1).XRD、UV-Vis DRS、HR-TEM等表征结果表明,所得材料均具有高度有序的二维介孔结构及四方相氧化锆的晶体结构.氮吸附和FT-IR表征结果进一步发现,通过改变硫酸/盐酸体积比可有效调变材料比表面积、孔容、孔径及表面L酸与B酸的相对强度.与纯硅介孔分子筛SBA-15不同,此系列SO42-/ZrO2-SiO2固体酸材料均在正戊烷的异构化反应中表现出较高的催化活性和稳定性.其原因在于,在合成过程中硫酸的加入不仅促使了酸基的形成,而且稳定了催化剂的晶体结构;盐酸的存在则保持了有序的介孔结构.由此可见,混酸合成体系有望制备出结构有序、酸性可调、催化性能优越的新型催化材料,并在众多酸催化反应中取得应用.
  • KRESGE C T, LEONOWICZ M E, ROTH W J, VARULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev. 1997, 97(6): 2373-2419.
    ZHAO D, FENG J, HUO Q, MELOSSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.
    CHEN X R, JU Y H, MOU C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with catalytic activity for biodiesel via esterification[J]. J Phys Chem C, 2007, 111(50): 18731-18737.
    HWANG C C, MOU C Y. Alumina-promoted sulfated mesoporous zirconia catalyst[J]. J. Phys. Chem. C, 2009, 113(13): 5212-5221.
    WANG Y, LEE K Y, CHOI S, LIU J, WANG L Q, PEDEN C H F, Grafting sulfated zirconia on mesoporous silica[J]. Green Chem, 2007, 9(6): 540-544.
    CHEN C, LI T, CHENG S, LIN H, BHONGALE C J, MOU C Y, Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica[J]. Micropor Mesopor Mater, 2001, 50(2-3): 201-208.
    CHANG B B, FU J, TIAN Y L, DONG X P. Mesoporous solid acid catalysts of sulfated zirconia/SBA-15 derived from a vapor-induced hydrolysis route[J]. Appl Catal A, 2012, 437-438: 149-154.
    LI F X, YU F, LI Y L, LI R F, XIE K C. Direct synthesis of Zr-SBA-15 mesoporous molecular sieves: characterization and catalytic activities after sulfated[J]. Micropor Mesopor Mater, 2007, 101(1-2): 250-255.
    LI R F, YU F, LI F X, ZHOU M M, XU B S, XIE K C. One-pot synthesis of superacid catalytic material SO42-/ZrO2-SiO2 with thermostable well-ordered mesoporous structure[J]. J Solid State Chem, 2009, 182(5): 991-994.
    CIESLA U, FRBA M, STUCKY G, SCHVTH F. Highly ordered porous zirconias from surfactant-controlled syntheses: Zirconium oxide-sulfate and zirconium oxo phosphate[J] Chem Mater, 1999, 11(2): 227-234.
    ZHAO D, HUO Q, FENG J, CHMELKA B, STUCKY G. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120: 6024-6036.
    TUEL A, GONTIE S, TEISSIER R. Zirconium containing mesoporous silicas: New catalysts for oxidation reactions in the liquid phase[J]. Chem Commun, 1996, (5): 651-652.
    LI M, FENG Z, XIONG G, XIONG G, YING P, XIN Q, LI C. Phase transformation in the surface region of zirconia detected by UV raman spectroscopy[J]. J Phys Chem B, 2001, 105(34): 8107-8111.
    FERNNDEZ L[WTBZ][WTB1]PEZ E, ESCRIBANO V S, PANIZZA M, CARNASCIALI M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001, 11(7): 1891-1897.
    YAMAGUCHI T. Recent progress in solid superacid[J]. Appl Catal, 1990, 61(1): 1-25.
    BAERTSCH C D, SOLED S L, IGLESIA E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia[J]. J Phys Chem B, 2001, 105(7): 1320-1330.
    WANG W, WANG J H, CEHN C L. n-Pentane isomerization over promoted SZ/MCM-41 catalysts[J]. Catal Today, 2004, 97(4): 307-313.
    WANG J H, MOU C Y, Alumina-promoted mesoporous sulfated zirconia: A catalyst for n-butane isomerization[J]. Appl Catal A, 2005, 286(1): 128-136.
    TANABE K, HATTORI H, YAMAGUCHI T. Crit Rev Surf Chem, 1990, 1: 1.
    RISCH M A, WOIF E E. Characterization and n-butane isomerization activity of high surface area sulfated zirconia catalysts[J]. Appl Catal A, 1998, 172: L1-L5.
    HAMMACHE S, GOODWIN J G. Characteristics of the active sites on sulfated zirconia for n-butane isomerization[J]. J Catal, 2003, 218(2): 258-266.
    CORMA A, GARCIA H. Lewis Acids: From conventional homogeneous to green homogenerous and heterogeneous catalysis[J]. Chem Rev, 2003, 103(11): 4307-4365.
  • 加载中
计量
  • 文章访问数:  1560
  • HTML全文浏览量:  14
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-02-03
  • 刊出日期:  2013-04-30

目录

    /

    返回文章
    返回