留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对Ni-Mg基蜂窝状催化剂生物燃气重整调变性能的影响

定明月 熊伟 涂军令 李宇萍 王铁军 马隆龙

定明月, 熊伟, 涂军令, 李宇萍, 王铁军, 马隆龙. 焙烧温度对Ni-Mg基蜂窝状催化剂生物燃气重整调变性能的影响[J]. 燃料化学学报(中英文), 2013, 41(07): 862-867.
引用本文: 定明月, 熊伟, 涂军令, 李宇萍, 王铁军, 马隆龙. 焙烧温度对Ni-Mg基蜂窝状催化剂生物燃气重整调变性能的影响[J]. 燃料化学学报(中英文), 2013, 41(07): 862-867.
DING Ming-yue, XIONG Wei, TU Jun-ling, LI Yu-ping, WANG Tie-jun, MA Long-long. Effect of calcination temperature on Ni-Mg based monolithic catalyst for biomass gas reforming reaction[J]. Journal of Fuel Chemistry and Technology, 2013, 41(07): 862-867.
Citation: DING Ming-yue, XIONG Wei, TU Jun-ling, LI Yu-ping, WANG Tie-jun, MA Long-long. Effect of calcination temperature on Ni-Mg based monolithic catalyst for biomass gas reforming reaction[J]. Journal of Fuel Chemistry and Technology, 2013, 41(07): 862-867.

焙烧温度对Ni-Mg基蜂窝状催化剂生物燃气重整调变性能的影响

基金项目: 国家自然科学基金(51006110, 51076158, 51206172); 国家重点基础研究发展规划(973计划, 2013CB228105).
详细信息
    通讯作者:

    王铁军

  • 中图分类号: TQ426

Effect of calcination temperature on Ni-Mg based monolithic catalyst for biomass gas reforming reaction

  • 摘要: 采用浸渍法制备了Ni、Mg双金属负载在堇青石表面形成的蜂窝状催化剂,研究了焙烧温度对催化剂结构和生物质粗燃气重整反应性能的影响.结果表明,在不同焙烧温度下主要有NiO和NiMgO2固溶体物相生成.相比于其他焙烧温度,催化剂在650 ℃焙烧温度下更有利于镍活性金属位的分散和活性位数量的增加.在干重整反应条件下,CH4、CO2的转化率以及H2、CO产率随焙烧温度的升高呈现先增加后降低的变化趋势,在650 ℃焙烧温度下达到最高.在水蒸气重整反应条件下主要发生烃类产物与H2O和CO2的重整反应以及水煤气变换反应,焙烧温度的升高有利于水煤气反应的进行.此外,焙烧温度对于干重整反应条件下的H2/CO体积比调节影响较小,而对于水蒸气重整反应条件下的H2/CO体积比可进行选择性调节.
  • 官巧燕, 廖福霖, 罗栋粲. 国内外生物质能发展综述[J]. 农机化研究, 2007, (11): 20-24. (GUAN Qiao-yan, LIAO Fu-lin, LUO Dong-can. Review on the development of bioenergy in China and the world[J]. Journal of Agricultural Mechanization Research, 2007, (11): 20-24.)
    林伟刚, 宋文立. 丹麦生物质发电的现状和研究发展趋势[J]. 燃料化学学报, 2005, 33(6): 650-655. (LIN Wei-gang, SONG Wen-li. Power production from biomass in Denmark[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 650-655. )
    汪俊锋, 常杰, 阴秀丽, 付严. 生物质气催化合成甲醇的研究[J]. 燃料化学学报, 2005, 33(1): 58-61. (WANG Jun-feng, CHANG Jie, YIN Xiu-li, FU Yan. Catalytic synthesis of methanol from biomass-derived syngas[J]. Journal of Fuel Chemistry and Technology, 2005, 33(1): 58-61.)
    CORELLA J, SANZ A. Modeling circulating fluidized bed biomass gasifiers: A pseudo-rigorous model for stationary state[J]. Fuel Process Technol, 2005, 86(9): 1021-1053.
    KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, YAMAZAKI Y, OMATA K, NAGAO D, KONNO M, YAMADA M. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas[J]. Appl Catal A: Gen, 2011, 395(1/2): 129-137.
    DELGADO J, AZNAR M P, CORELLA J. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO and CaO-MgO for hot gas cleaning[J]. Ind Eng Chem Res, 1997, 36(5): 1535-1543.
    ENCINAR J M, BELTRN F J, RAMIRO A, GONZLEZ J F. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables[J]. Fuel Process Technol, 1998, 55(3): 219-233.
    AZNAR M P, COREL J, LAHO Z J. Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalyst[J]. Ind Eng Chem Res, 1993, 32(1): 1-10
    BAKER E G, MUDGE L K, WILCOX W A. Proceedings of conference on developments in thermochemical biomass conversion. Blackie Academic & Professional, Banff, Canada, 1996.
    YAMAGUCHI T, YAMASAKI K, YOSHIDA O. Deactivation and regeneration of catalyst for steam gasification of wood to methanol synthesis gas[J]. Ind Eng Chem Pro Res Dev, 1986, 25(2): 239-243.
    RICHARDSON S M, GRAY M R. Enhancement of residue hydroprocessing catalysts by doping with alkali metals[J]. Energy Fuels, 1997, 11(6): 1119-1126.
    BANGALA D N, ABATZOGLOU N, CHORNET E. Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2 and La2O3[J]. AIChE J, 1998, 44(4): 927-936.
    EDVINSSON A R, NYSTREM M, SELLIN A. Development of a monolith-based process for H2O2 production: From idea to large-scale implementation[J]. Catal Today, 2001, 69(1/4): 247-252.
    LIU W, WILLIAM P A, SORENSEN C M, BOGER T. Monolith reactor for the dehydrogenation of ethylbenzene to styrene[J]. Ind Eng Chem Res, 2002, 41(13): 3131-3138.
    QIU M, LI Y, WANG T, ZHANG Q, WANG C, ZHANG X, WU C, MA L, LI K. Upgrading biomass fuel gas by reforming over Ni-MgO/γ-Al2O3 cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer[J]. Appl Energy, 2011, 90(1): 3-10.
    DJAIDJA A, LIBS S, KIENNEMANN A, BARAMA A. Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts[J]. Catal Today, 2006, 113(3/4): 194-200.
    BRADFORD M C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Appl Catal A: Gen, 1996, 142(1): 73-96.
  • 加载中
计量
  • 文章访问数:  1493
  • HTML全文浏览量:  22
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-21
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-07-30

目录

    /

    返回文章
    返回