留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚

王琰 王文丽 陈月仙 郑家军 李瑞丰

王琰, 王文丽, 陈月仙, 郑家军, 李瑞丰. 含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚[J]. 燃料化学学报(中英文), 2013, 41(07): 875-882.
引用本文: 王琰, 王文丽, 陈月仙, 郑家军, 李瑞丰. 含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚[J]. 燃料化学学报(中英文), 2013, 41(07): 875-882.
WANG Yan, WANG Wen-li, CHEN Yue-xian, ZHENG Jia-jun, LI Rui-feng. Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst[J]. Journal of Fuel Chemistry and Technology, 2013, 41(07): 875-882.
Citation: WANG Yan, WANG Wen-li, CHEN Yue-xian, ZHENG Jia-jun, LI Rui-feng. Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst[J]. Journal of Fuel Chemistry and Technology, 2013, 41(07): 875-882.

含有多级孔复合分子筛的复合催化剂上合成气一步制二甲醚

基金项目: National Natural Science Foundation of China (21246003) and Research Fund for Doctoral Program of Higher Education (20121402120011).
详细信息
  • 中图分类号: O643

Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst

  • 摘要: 以Beta分子筛为核、Y型分子筛为壳层的多级孔复合分子筛(BFZ)作为甲醇脱水催化剂用于固定床中合成气一步法制备二甲醚,并与纯Y型分子筛进行了比较,研究了二甲醚合成催化反应活性与甲醇脱水催化剂孔道结构和酸性之间的关系.结果表明,复合分子筛HBFZ具有中等强度的酸性和中孔孔道结构,有利于提高合成气制备二甲醚的催化反应活性.二甲醚直接合成催化剂由工业CuO/ZnO/Al2O3催化剂(CZA)与分子筛(HBFZ、HY)采用机械混合方法制备;催化评价结果显示,CZA/HBFZ比CZA/HY具有更优的催化活性和稳定性.在250 ℃, 5.0 MPa 和 1 500 h-1的反应条件下,CZA/HBFZ催化剂上CO的转化率和DME的选择性分别达到94.2%和67.9%.
  • FAUNGNAWAKIJ K, FUKUNAGA T, KIKUCHI R, EGUCHI K. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether[J]. J Catal, 2008, 256(1): 37-44.
    CHEN Y, SHAO Z, XU N. Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst[J]. J Nat Gas Chem, 2008, 17(1): 75-80.
    ARKHAROV A M, GLUKHOV S D, GREKHOV L V, ZHERDEV A A, IVASHCHENKO N A, KALININ D N. SHARABURIN A V, ALEKSANDROV A A. Use of dimethyl ether as a motor fuel and a refrigerant[J]. Chem Pet Eng, 2003, 39(5): 330-336.
    PENG X D, WANG A W, TOSELAND B A, TIJM P J A. Single-step syngas-to-dimethyl ether processes for optimal productivity, minimal emissions, and natural gas-derived syngas[J]. Ind Eng Chem Res, 1999, 38(11): 4381-4388.
    NAIK S P, DU H, WAN H, BUI V, MILLER J D, ZMIERCZAK W W. A comparative study of ZnO-CuO-Al2O3/SiO2-Al2O3 composite and hybrid catalysts for direct synthesis of dimethyl ether from syngas[J]. Ind Eng Chem Res, 2008, 47(23): 9791-9794.
    FLORES J H, PEIXOTO D P B, APPEL L G, DE AVILLEZ R R, DA SILVA M I P. The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas[J]. Catal Today, 2011, 172(1): 218-225.
    RAMOS F S, BORGES L E P, MONTEIRO J L, FRAGA M A, SOUSA-AGUIAR E F, APPEL L G. Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures[J]. Catal Today, 2005, 101(1): 39-44.
    QI G X, ZHENG X M, FEI J H, HOU Z Y. A novel catalyst for DME synthesis from CO hydrogenation: 1. Activity, structure and surface properties[J], J Mol Catal A: Chem, 2001, 176(1/2): 195-203.
    SIERRA I, EREA J, AGUAYO A T, ARANDES J M, BILBAO J. Regeneration of CuO-ZnO-Al2O3/[WTBZ]γ[WTB1]-Al2O3 catalyst in the direct synthesis of dimethyl ether[J]. Appl Catal B: Environ, 2010, 94(1/2): 108-116.
    ZUO Y Z, ZHANG Q, AN X, HAN M H, WANG T F, WANG J F, JIN Y. Single-step dimethyl ether synthesis on a Cu/ZnO/Al2O3/ZrO2+[WTBZ]γ[WTB1]-Al2O3 bifunctional catalyst in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 102-107.
    TAKEGUCHI T, YANAGISAWA K I, INUI T, INOUE M. Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids[J]. Appl Catal A: Gen, 2000, 192(2): 201-209.
    KIM J H, PARK M J, KIM S J, JOO O S, JUNG K D. DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5[J]. Appl Catal A: Gen, 2004, 264(1): 37-41.
    SUN K, LU W, QIU F, LIU S, XU X. Direct synthesis of DME over bifunctional catalyst: surface properties and catalytic performance[J]. Appl Catal A: Gen, 2003, 252(2): 243-249.
    GE Q, HUANG Y, QIU F, LI S. Bifunctional catalysts for conversion of synthesis gas to dimethyl ether[J]. Appl Catal A: Gen, 1998, 167(1): 23-30.
    MAO D, XIA J, CHEN Q, LU G. Highly effective conversion of syngas to dimethyl ether over the hybrid catalysts containing high-silica HMCM-22 zeolites[J]. Catal Commun, 2009, 10(5): 620-624.
    NAIK S P, BUI V, RYU T, MILLER J D, ZMIERCZAK W. Al-MCM-41 as methanol dehydration catalyst[J]. Appl Catal A: Gen, 2010, 381(1/2): 183-190.
    SAI PRASAD P S, BAE J W, KANG S H, LEE Y J, JUN K W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the other zeolites[J]. Fuel Process Technol, 2008, 89(12): 1281-1286.
    MAO D, YAN W, XIA J, ZHANG B, LU G. The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified [WTBZ]γ[WTB1]-alumina as methanol dehydration components[J]. J Mol Catal A: Chem , 2006, 250(1/2): 138-144.
    KANG S H, BAE J W, JUN K W, POTDAR H S. Dimethyl ether synthesis from syngas over the composite catalysts of Cu-ZnO-Al2O3/Zr-modified zeolites[J]. Catal Commun, 2008, 9(10): 2035-2039.
    XIA J, MAO D, ZHANG B, CHEN Q, TANG Y. One-step synthesis of dimethyl ether from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst[J]. Catal Lett, 2004, 98(4): 235-240.
    JIN D, ZHU B, HOU Z, FEI J, LOU H, ZHENG X. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts[J]. Fuel, 2007, 86(17/18): 2707-2713.
    TANG Q, XU H, ZHENG Y, WANG J, LI H, ZHANG J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J]. Appl Catal A: Gen, 2012, 413-414: 36-42.
    ZHENG J, ZENG Q, YI Y, WANG Y, MA J, QIN B, ZHANG X, SUN W, LI R. The hierarchical effects of zeolite composites in catalysis[J]. Catal Today, 2011, 168(1): 124-132.
    ZHENG J, ZENG Q, ZHANG Y, WANG Y, MA J, ZHANG X, SUN W, LI R. Hierarchical porous zeolite composite with a core-shell structure fabricated using [WTBZ]β[WTB1]-zeolite crystals as nutrients as well as cores[J]. Chem Mater, 2010, 22(22): 6065-6074.
    ZHENG J, ZHANG X, WANG Y, BAI Y, SUN W, LI R. Synthesis and catalytic performance of a bi-phase core-shell zeolite composite[J]. J Porous Mater, 2009, 16(6): 731-736.
    PREZ-RAMREZ J, VERBOEKEND D, BONILLA A, ABELL[WTBZ][WTB1] S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Adv Funct Mater, 2009, 19(24): 3972-3979.
    KATADA N, IGI H, KIM J H. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B, 1997, 101(31): 5969-5977.
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2): 347-354.
    YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 6(2): 147-152.
    SEO C W, JUNG K D, LEE K Y, YOO K S. Dehydration of methanol over nordstrandite based catalysts for dimethyl ether synthesis[J]. J Ind Eng Chem, 2009, 25(5): 649-652.
    ROWNAGHI A A, REZAEI F, STANTE M, HEDLUND J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals[J]. Appl Catal B: Environ, 2012, 119-120: 56-61.
  • 加载中
计量
  • 文章访问数:  1679
  • HTML全文浏览量:  17
  • PDF下载量:  1303
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-11
  • 修回日期:  2013-06-09
  • 刊出日期:  2013-07-30

目录

    /

    返回文章
    返回