留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

果糖低温快速热解制备5-羟甲基糠醛的机理研究

陆强 廖航涛 张阳 张俊姣 董长青

陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1070-1076.
引用本文: 陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1070-1076.
LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1070-1076.
Citation: LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1070-1076.

果糖低温快速热解制备5-羟甲基糠醛的机理研究

基金项目: 国家自然科学基金(51106052, 51276062);国家科技支撑计划(2012BAD30B01)。
详细信息
    通讯作者:

    陆强(1982-), 男, 江苏江阴人, 博士, 副教授, 主要从事生物质高效热解转化方面的研究, E-mail: qianglu@mail.ustc.edu.cn。

  • 中图分类号: TK6

Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural

  • 摘要: 提出了一种利用果糖低温快速热解制备5-羟甲基糠醛(HMF)并联产糠醛(FF)副产物的方法。通过Py-GC/MS(快速热解-气相色谱/质谱联用)实验,研究果糖快速热解的产物分布特性以及温度对HMF生成的影响。结果表明,HMF是果糖低温快速热解的最主要产物,在350 ℃下可获得最大产率,在250 ℃下可获得最高纯度,相对峰面积含量高达81.2%。此外,通过密度泛函理论计算,研究果糖热解形成HMF的五条可能反应途径。计算结果表明,果糖热解形成HMF的能量最优途径为路径1,即果糖首先发生C2位羟基与C1位氢的脱水,再发生C3位羟基与C1位羟基氢的脱水,最后发生C4位羟基与C5位氢的脱水而形成HMF。
  • BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012, 38: 68-94.
    ISAHAK W N R W, HISHAM M W M, YARMO M A, YUN H. A review on bio-oil production from biomass by using pyrolysis method[J]. Renew Sust Energ Rev, 2012, 16(8): 5910-5923.
    朱锡锋, 陆强. 生物质快速热解制取生物油[J]. 科技导报, 2007, 25(21): 69-75. (ZHU Xi-feng, LU Qiang. Fast pyrolysis of biomass for producing bio-oil[J]. Science & Technology Review, 2007, 25(21): 69-75.)
    吴逸民, 赵增立, 吴文强, 李海滨. 基于裂解气质联用分析的生物质逐级热解研究[J]. 燃料化学学报, 2010, 38(2): 168-173. (WU Yi-min, ZHAO Zeng-li, WU Wen-qiang, LI Hai-bin. Step-pyrolysis of biomass using pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 168-173.)
    CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels, 2004, 18(2): 590-598.
    陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. (LU Qiang, ZHU Xi-feng. Production of levoglucosenone from fast pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431.)
    WANG Z, LU Q, ZHU X F, ZHANG Y. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. Chem Sus Chem, 2011, 4(1): 79-84.
    TORRI C, LESCI I G, FABBRI D. Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate[J]. J Anal Appl Pyrol, 2009, 84(1): 25-30.
    王军, 张春鹏, 欧阳平凯. 5-羟甲基糠醛制备及应用的研究进展[J]. 化工进展, 2008, 27(5): 702-707. (WANG Jun, ZHANG Chun-peng, OUYANG Ping-kai. Advances in production and application of 5-hydroxymethyl furfural[J]. Chemical Industry and Engineering Progress, 2008, 27(5): 702-707.)
    姜楠, 齐崴, 黄仁亮, 苏荣欣, 何志敏. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(9): 1937-1945. (JIANG Nan, QI Wei, HUANG Ren-liang, SU Rong-xin, HE Zhi-min. Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1937-1945.)
    LESHKOV Y R,CHHEDA J N,DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937.
    ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
    PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling part 4. The pyrolysis of D-glucose: The formation of furans[J]. J Anal Appl Pyrol, 2008, 83(1): 37-63.
    ASSARY R S, CURTISS L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study[J]. Energy Fuels, 2011, 26(2): 1344-1352.
    GLENN R P, GEOFFREY N R. Pyrolysis of inulin, glucose, and fructose[J]. Carbohyd Res, 1993, 24(2): 341-359.
    BECKE A D. Density-functional thermochemistry III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652.
    ZHANG X L, LI J, YANG W H, BLASIAK W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy Fuels, 2011, 25(8): 3739-3746.
    黄金保, 刘朝, 魏顺安, 黄晓露, 李豪杰. 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报, 2011, 39(8): 590-594. (HUANG Jin-bao, LIU Chao, WEI Shun-an, HUANG Xiao-lu, LI Hao-jie. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 590-594.)
    ZHANG X L, YANG W H, BLASIAK W. Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis[J]. J Anal Appl Pyrol, 2012, 96: 110-119.
    黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)
    GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Chem Phys, 1990, 94(14): 5523-5527.
    SANDERS E B, GOLDSMITH A I, SEEMAN J I. A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation[J]. J Anal Appl Pyrol, 2003, 66(1-2): 29-50.
  • 加载中
计量
  • 文章访问数:  1937
  • HTML全文浏览量:  32
  • PDF下载量:  885
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-26
  • 修回日期:  2013-05-01
  • 刊出日期:  2013-09-30

目录

    /

    返回文章
    返回