留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光辐照驱动水-碳低温催化制氢实验研究

许冰清 张晓晴 龙华丽 尚书勇 印永祥

许冰清, 张晓晴, 龙华丽, 尚书勇, 印永祥. 光辐照驱动水-碳低温催化制氢实验研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1102-1107.
引用本文: 许冰清, 张晓晴, 龙华丽, 尚书勇, 印永祥. 光辐照驱动水-碳低温催化制氢实验研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1102-1107.
XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1102-1107.
Citation: XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1102-1107.

光辐照驱动水-碳低温催化制氢实验研究

基金项目: 国家自然科学基金(11075113)。
详细信息
    通讯作者:

    印永祥, Tel: 13348865689, E-mail: hyyx0675@sina.com;尚书勇, Tel: 13518216536, E-mail: ssyandmltcdj@163.com。

  • 中图分类号: TK91

Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating

  • 摘要: 在氙灯模拟的太阳光聚光反应系统上,以K2CO3作为催化剂进行了700~720 ℃条件下的水-碳低温催化制氢实验。结果表明,催化作用下的产氢速率是未添加催化剂时的10倍,催化剂添加量在10%~20%时反应产氢率没有本质的区别。具体分析了K2CO3催化水-碳制氢反应的氧转移机理,并用该机理对反应产物中出现的氢、氧不平衡现象做出了解释。实验中,光能转换化为化学能的效率达到13.12%,优于光伏法制氢效率10.85%。最后对进一步提高能量转换效率提出了可参考的思路。
  • STEINFELD A, WEIMER A W. Thermochemical production of fuels with concentrated solar energy[J]. Opt Express, 2010, 18(S1): A100-A111.
    ROMERO MANUEL, STEINFELD ALDO. Concentrating solar thermal power and thermochemical fuels[J]. Energy Environ Sci, 2012, 5(11): 9234-9245.
    SMESTAD G P, STEINFELD A. Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts[J]. Ind Eng Chem Res, 2012, 51(37): 11828-11840.
    王宝辉, 吴红军, 刘淑芝, 盖翠萍. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. (WANG Bao-hui, WU Hong-jun, LIU Shu-zhi, GAI Cui-ping. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 733-738.)
    TRIBUTSCH H. Photovoltaic hydrogen generation[J]. Int J Hydrogen Energy, 2008, 33(21): 5911-5930.
    XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41: 1-12.
    STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions[J]. Chem Mater, 2010, 22(3): 851-859.
    祝星, 王华, 魏永刚, 李孔斋, 晏冬霞. 金属氧化物两步法化学循环分解水制氢化学进[J]. 2010, 22(5): 1010-1020. (ZHU Xing, WANG Hua, WEI Yong-gang, LI Kong-zhai, YAN Dong-xia. Hydrogen production by two-step water-splitting thermochemical cycle based on metal oxide redox System[J]. Progress in Chemistry, 2010, 22(5): 1010-1020.)
    NOBUYUKI G, TETSURO M, NOBUYUKI K, TATSUYA K. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps[J]. Int J Hydrogen Energy, 2011, 36(8): 4757-4767.
    WORNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catal Today, 1998, 46(2): 165-174.
    BUCK R, MUIR J F, HOGAN RE.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project[J]. Sol Energy Mater, 1991, 24(1): 449-463.
    MUIR J, HOGAN R, SKOCYPEC R, BUCK R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis[J]. Solar Energy, 1994, 52(6): 467-477.
    KODAMA T, KIYAMA A. Solar methane reforming using a new type of catalytically-activated metallic foam absorber[J]. J Sol Energy Eng, 2004, 126(2): 808-811.
    BERMAN A, KARN R K, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy Fuels, 2006, 20(2): 455-462.
    WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate:Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.
    金会心, 王华. 聚光太阳能加热昭通褐煤的气化试验研究[J]. 燃料化学学报, 2001, 29(6): 548-551. (JIN Hui-xin, WANG Hua. Gasification of Zhao tong Lignite Heated by Concentrated Solar Energy[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6): 548-551.)
    WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen with out formation of methane[J]. Fuel, 2009, 88(9): 1572-1579.
    MOULIJN J A, KAPTEIJN F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.
    孙雪莲, 王黎, 张占涛. 煤气化复合催化剂研究及机理探讨[J]. 煤炭转化, 2006, 29(1): 15-18. (SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J]. Coal conversion, 2006, 29(1): 15-18.)
    郝西维, 王黎, 吴嘉州. 煤温和气化技术研究进展[J]. 煤炭转化, 2008, 31(2): 83-89. (HAO Xi-wei, WANG Li, WU Jia-zhou. Progress of research on coal mild gasification[J]. Coal conversion, 2008, 31(2): 83-89.)
    徐秀峰, 顾永达, 陈诵英. 煤焦气化反应的影响因素和反应机理的研究进展[J]. 煤炭转化, 1996, 19(2): 48-53. (XU Xiu-feng, GU Yong-da, CHEN Song-ying. The study of influential factors to char gasification reaction and mechanism[J]. Coal conversion, 1996, 19(2): 48-53.)
  • 加载中
计量
  • 文章访问数:  1361
  • HTML全文浏览量:  20
  • PDF下载量:  902
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-15
  • 修回日期:  2013-03-04
  • 刊出日期:  2013-09-30

目录

    /

    返回文章
    返回