留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

果糖低温快速热解制备糠醛的机理研究

张俊姣 廖航涛 陆强 张阳 董长青

张俊姣, 廖航涛, 陆强, 张阳, 董长青. 果糖低温快速热解制备糠醛的机理研究[J]. 燃料化学学报(中英文), 2013, 41(11): 1303-1309.
引用本文: 张俊姣, 廖航涛, 陆强, 张阳, 董长青. 果糖低温快速热解制备糠醛的机理研究[J]. 燃料化学学报(中英文), 2013, 41(11): 1303-1309.
ZHANG Jun-jiao, LIAO Hang-tao, LU Qiang, ZHANG Yang, DONG Chang-qing. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1303-1309.
Citation: ZHANG Jun-jiao, LIAO Hang-tao, LU Qiang, ZHANG Yang, DONG Chang-qing. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1303-1309.

果糖低温快速热解制备糠醛的机理研究

基金项目: 国家自然科学基金(51276062,51106052);国家科技支撑计划(2012BAD30B01)。
详细信息
    通讯作者:

    陆强,E-mail:qianglu@mail.ustc.edu.cn。

  • 中图分类号: TK6

Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural

  • 摘要: 果糖低温快速热解制备5-羟甲基糠醛(HMF)的过程中,糠醛(FF)是一种重要的副产物。通过Py-GC/MS(快速热解-气相色谱/质谱联用)实验考察果糖低温快速热解过程中FF的形成特性。结果表明,FF的产率和相对含量都随着热解温度的提高先增大后减小,并在350℃时达到最大值,最高相对峰面积含量达到11.6%。此外,通过密度泛函理论计算,研究果糖热解形成FF的四条可能途径,计算结果表明,果糖热解形成FF的最优途径为路径2,即果糖首先经历一个协同的六元环过渡态,C5-C6键断裂的同时C6位羟基上的氢与C4位的羟基发生脱水反应,脱出一分子甲醛和一分子水,生成含C4=C5双键的二氢呋喃中间体,随后C2位上的羟基与C1位上的氢通过一个四元环过渡态又脱出一分子水,生成的烯醇中间体中烯醇氢与C3位的羟基最后经历一个六元环的过渡态再脱出一分子水,最终形成FF。
  • 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. (LU Qiang, ZHU Xi-feng. Production of levoglucosenone from fast pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431.)
    FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalszed by nanopowder metal oxides: Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem, 2007, 9(12): 1374-1379.
    RUTKOWSKI P. Catalytic effects of copper(Ⅱ) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J]. J Anal Appl Pyrolysis, 2012, 98: 86-97.
    THANGALAZHY S, ADHIKARI S, CHATTANTHAN S A, GUPTA R B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresour Technol, 2012, 118: 150-157.
    BU Q, LEI H, REN S, WANG L, ZHANG Q, TANG J, RUAN R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass[J]. Bioresour Technol, 2012, 108: 274-279.
    PISKORZ J, MAJERSKI P, RADLEIN D, VLADARS A, SCOTT D S. Flash pyrolysis of cellulose for production of anhydro-oligomers[J]. J Anal Appl Pyrolysis, 2000, 56(2): 145-166.
    LU Q, DONG C Q, ZHANG X M, TIAN H Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2011, 90(2): 204-212.
    BRANCA C, GALGANO A, BLASI C, ESPOSITO M, BLASI C. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy Fuel, 2011, 25(1): 359-369.
    WAN Y Q, CHEN P, ZHANG B, YANG C Y, LIU Y H, LIN X Y, RUAN R. Microwave-assisted pyrolysis of biomass: Catalyst to improve product selectivity[J]. J Anal Appl Pyrolysis, 2009, 86(1): 161-167.
    PATWARDHAN P R, SATRIO J A, BROWN R C, SHANKS B H. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol, 2010, 101(12): 4646-4655.
    LU Q, XIONG W M, LI W Z, GUO Q X, ZHU X F. Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds[J]. Bioresour Technol, 2009, 100(20): 4871-4876.
    陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报, 2013, 41(9): 1070-1076. (LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Mechanism study on low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1070-1076.)
    黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)
    黄金保, 童红, 曾桂生, 谢宇, 李伟民. 丁醇醛和丁醇酸热解形成CO和CO2机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(8): 979-984. (HUANG Jin-bao, TONG Hong, ZENG Gui-sheng, XIE Yu, LI Wei-min. Density functional theory studies on the formation mechanism of CO and CO2 in pyrolysis of hydroxyl butyraldehyde and butyric acid[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 979-984.)
    ZHANG X L, YANG W H, BLASIAK W. Kinetics of levoglucosan and formaldehyde formation during cellulose pyrolysis process[J]. Fuel, 2012, 96: 383-391.
    PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of D-glucose: The formation of furans[J]. J Anal Appl Pyrolysis, 2008, 83(1): 37-63.
    ASSARY R S, CURTISS L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical study[J]. Energy Fuels, 2011, 26(2): 1344-1352.
    TAKU M A, YUKIKO S, MASARU W. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa[J]. J Supercrit Fluid, 2007, 40(3): 381-388.
  • 加载中
计量
  • 文章访问数:  1323
  • HTML全文浏览量:  23
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-26
  • 修回日期:  2013-05-13
  • 刊出日期:  2013-11-30

目录

    /

    返回文章
    返回