留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度泛函理论研究Al在丝光沸石骨架中的取代位置和NH3的吸附

郭海燕 任君 冯刚 李昌盛 彭兴 曹端林

郭海燕, 任君, 冯刚, 李昌盛, 彭兴, 曹端林. 密度泛函理论研究Al在丝光沸石骨架中的取代位置和NH3的吸附[J]. 燃料化学学报(中英文), 2014, 42(05): 582-590.
引用本文: 郭海燕, 任君, 冯刚, 李昌盛, 彭兴, 曹端林. 密度泛函理论研究Al在丝光沸石骨架中的取代位置和NH3的吸附[J]. 燃料化学学报(中英文), 2014, 42(05): 582-590.
GUO Hai-yan, REN Jun, FENG Gang, LI Chang-sheng, PENG Xing, CAO Duan-lin. Distribution of Al and adsorption of NH3 in mordenite:A computational study[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 582-590.
Citation: GUO Hai-yan, REN Jun, FENG Gang, LI Chang-sheng, PENG Xing, CAO Duan-lin. Distribution of Al and adsorption of NH3 in mordenite:A computational study[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 582-590.

密度泛函理论研究Al在丝光沸石骨架中的取代位置和NH3的吸附

基金项目: Supported by the National Science Foundation of China (21371159), the Natural Science Foundation of Shanxi Province (2009011014) and Shenzhen Strategic Emerging Industries Special Fund Program of China (GGJS20120619101655715).
详细信息
  • 中图分类号: O643

Distribution of Al and adsorption of NH3 in mordenite:A computational study

Funds: Supported by the National Science Foundation of China (21371159), the Natural Science Foundation of Shanxi Province (2009011014) and Shenzhen Strategic Emerging Industries Special Fund Program of China (GGJS20120619101655715).
  • 摘要: 采用色散校正密度泛函方法(DFT-D2)计算了Al同晶取代进入H-[Al]MOR丝光沸石骨架中可能的位置及其对NH3分子吸附表征Brönsted酸性。热力学上,Al优先取代位是T2O5位,接着是T4O2、T1O7和T3O1位,能量差仅在0.03~0.07 eV,表明Al可能分布在四种非等价晶体T位。同时,电荷平衡质子的位置影响Al取代位的稳定性,数据表明电荷平衡质子与O5位结合的可能性最大。另外,用DFT和 DFT-D2方法计算了NH3分子在每一个Al取代的T位的吸附能,通过比较,DFT低估了NH3吸附能0.41 eV,表明色散校正DFT-D2方法对于NH3吸附是很有必要的,T2O5位的Brönsted酸性最强。
  • BURBIDGE B W, KEEN I M, EYLES M K. Physical and catalytic properties of the zeolite mordenite[M]. In: Molecular Sieve Zeolites-II. Adv Chem Ser, 1971, 102: 400-409.

    LEACH H. Application of molecular sieve zeolites to catalysis[J]. Annu Rep Pro Chem Sect A: Inorg Chem, 1971, 68: 195-219.

    BUSCA G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107(11): 5366-5410.

    NIWA M, SUZUKI K, KATADA N, KANOUGI T, ATOGUCHI T . Ammonia IRMS-TPD study on the distribution of acid sites in mordenite[J]. J Phys Chem B, 2005, 109(40): 18749-18757.

    MARIE O, MASSIANI P, THIBAULT-STARZYK F. Infrared evidence of a third brønsted site in mordenites[J]. J Phys Chem B, 2004, 108(16): 5073-5081.

    BAJPAI P K, RAO M S, GOKHALE K. Synthesis of mordenite type zeolites[J]. Ind Eng Chem Prod Res Dev, 1978, 17(3): 223-227.

    BAJPAI P K. Synthesis of mordenite type zeolite[J]. Zeolites, 1986, 6(1): 2-8.

    ALBERTI A. Location of Brønsted sites in mordenite[J]. Zeolites, 1997, 19(5/6): 411-415.

    ALBERTI A, DAVOLI P, VEZZALINI G. The crystal structure refinement of a natural mordenite[J]. Z Kristallogr -Cryst Mater, 1986, 175(3/4): 249-256.

    LIU B, GARCÍA-PÍREZ E, DUBBELDAM D, SMIT B, CALERO S. Understanding aluminum location and non-framework ions effects on alkane adsorption in aluminosilicates: A molecular simulation study[J]. J Phys Chem C, 2007, 111(28): 10419-10426.

    BAN S, VLUGT T J H. Adsorption and diffusion of alkanes in Na-MOR: Modeling the effect of the aluminum distribution[J]. J Chem Theory Comput, 2009, 5(10): 2858-2865.

    RAMACHANDRAN C E, WILLIAMS B A, VAN BOKHOVEN J A, MILLER J T. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: Implications for catalytic activity[J]. J Catal, 2005, 233(1): 100-108.

    BRÄNDLE M, SAUER J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites[J]. J Am Chem Soc, 1998, 120(7): 1556-1570.

    DEMUTH T, HAFNER J, BENCO L, TOULHOAT H. Structural and acidic properties of mordenite. An ab initio density-functional study[J]. J Phys Chem B, 2000, 104(19): 4593-4607.

    OUMI Y, KANAI T, LU B, SANO T. Structural and physico-chemical properties of high-silica mordenite[J]. Micropor Mesopor Mater, 2007, 101(1/2):127-133.

    YUAN S, WANG J, LI Y, PENG S. Siting of B, Al, Ga or Zn and bridging hydroxyl groups in mordenite: an ab initio study[J]. J Mol Catal A: Chem, 2001, 175(1/2):131-138.

    MAACHE M, JANIN A, LAVALLEY J C, BENAZZI E. FT infrared study of Brnsted acidity of H-mordenites: Heterogeneity and effect of dealumination[J]. Zeolites, 1995, 15(6): 507-516.

    LAMBEROV A A, KUZNETSOV A M, SHAPNIK M S, MASLIY A N, BORISEVICH S V, ROMANOVA R G, EGOROVA S R. Quantum-chemical investigation of the formation of Lewis acid centers of high-siliceous zeolites[J]. J Mol Catal A: Chem, 2000, 158(1): 481-486.

    FENG G, LIAN Y Y, YANG D Q, LIU J W, KONG D J. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12: A computational study[J]. Can J Chem, 2013, 91(10): 925-934.

    ELANANY M, VERCAUTEREN D P, KOYAMA M, KUBO M, SELVAM P, BROCLAWIK E, MIYAMOTO A. H-MOR: Density functional investigation for the relative strength of Brnsted acid sites and dynamics simulation of NH3 protonation-deprotonation[J]. J Mol Catal A: Chem, 2006, 243(1): 1-7.

    DÍAZ L, SIERRAALTA A, NASCIMENTO MAC, A[WTBZ]Й[WTB1]EZ R. Evaluation of Brnsted sites inside the H-MOR employing NH3: A theoretical study[J]. J Phys Chem C, 2013, 117(10): 5112-5117.

    HUO H, PENG L, GAN Z, GREY C P. Solid-state MAS NMR studies of Brnsted acid sites in zeolite H-mordenite[J]. J Am Chem Soc, 2012, 134(23): 9708-9720.

    BLUMENFELD A L, COSTER D, FRIPIAT J J. Broensted acid sites and surface structure in zeolites: A high-resolution 29Si NMR REDOR study[J]. J Phys Chem, 1995, 99(41): 15181-15191.

    JACOBS W, DE HAAN J, VAN DE VEN L, VAN SANTEN R. Interaction of ammonia with Brnsted acid sites in different cages of zeolite Y as studied by proton MAS NMR[J]. J Phys Chem, 1993, 97(40): 10394-10402.

    JACOBS W P J H, VAN WOLPUT J H M C, VAN SANTEN R A. An in situ Fourier transform infrared studyof zeolitic vibrations: Dehydration, deammoniation, and reammoniation of ion-exchanged Y zeolites[J]. Zeolites, 1993, 13(3): 170-182.

    KRESSE G, FURTHM LLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.

    KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.

    KERBER T, SIERKA M, SAUER J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory[J]. J Comput Chem, 2008, 29(13): 2088-2097.

    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787-1799.

    PERDEW JP, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    BLÖCHL P E, FÖRST C, SCHIMPL J. Projector augmented wave method: ab initio molecular dynamics with full wave functions[J]. Bull Mater Sci, 2003, 26(1): 33-41.

    BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24):17953-17979.

    REN L M, GUO Q, ZHANG H Y, ZHU L F, YANG C G, WANG L, MENG X J, FENG Z C, LI C, XIAO F S. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals[J]. J Mater Chem, 2012, 22(14): 6564-6567.

    ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73(20): 205101.
  • 加载中
计量
  • 文章访问数:  823
  • HTML全文浏览量:  14
  • PDF下载量:  1236
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-31
  • 修回日期:  2014-01-07
  • 刊出日期:  2014-05-30

目录

    /

    返回文章
    返回