留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能

董莉莉 童希立 王英勇 靳国强 郭向云

董莉莉, 童希立, 王英勇, 靳国强, 郭向云. 硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能[J]. 燃料化学学报(中英文), 2014, 42(07): 845-850.
引用本文: 董莉莉, 童希立, 王英勇, 靳国强, 郭向云. 硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能[J]. 燃料化学学报(中英文), 2014, 42(07): 845-850.
DONG Li-li, TONG Xi-li, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(07): 845-850.
Citation: DONG Li-li, TONG Xi-li, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(07): 845-850.

硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能

基金项目: 国家自然科学基金青年科学基金(21203233);山西省青年科技研究基金(2013021011-6)。
详细信息
    通讯作者:

    童希立,Tel/Fax:+86-351-4065282,E-mail:tongxili@sxicc.ac.cn。

  • 中图分类号: O643;O646

Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation

  • 摘要: 以硼掺杂碳化硅(B0.1SiC)为载体,采用循环伏安法在B0.1SiC载体上电沉积Pt纳米粒子制备了Pt/B0.1SiC催化剂。利用X射线光电子能谱、X射线衍射、氮气吸附-脱附、扫描电镜及透射电镜等测试方法对催化剂的晶型、表面性质及形貌进行了表征。结果表明,硼原子掺杂进入SiC晶格并取代了Si 位点,使B0.1SiC载体的导电性增强;Pt纳米粒子均匀地分布在B0.1SiC载体上,平均粒径为2.7 nm。与相同条件下制备的Pt/SiC催化剂相比,Pt/B0.1SiC具有较大的电化学活性表面积、更高的甲醇催化氧化活性和稳定性。
  • WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. J Electroanal Chem, 1999, 461(1/2): 14-31.
    LIU H S, SONG C J, ZHANG L, ZHANG J J, WANG H J, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources, 2006, 155(2): 95-110.
    CHEN A C, HOLT-HINDLE P. Platinum-based nanostructured materials: Synthesis, properties, and applications[J]. Chem Rev, 2010, 110(6): 3767-3804.
    ROEN L M, PAIK C H, JARVIC T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochem Solid-State Lett, 2004, 7(1): A19-A22.
    KANGASNIEMI K H, CONDIT D A, JARVI T D. Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions[J]. J Electrochem Soc, 2004, 151(4): E125-E132.
    WANG Y J, WILKINSON D P, ZHANG J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chem Rev, 2011, 111(12): 7625-7651.
    QIU Z, HUANG H, DU J, FENG T, ZHANG W K, GAN Y P, TAO X Y. NbC nanowire-supported Pt nanoparticles as a high performance catalyst for methanol electrooxidation[J]. J Phys Chem C, 2013, 117(27): 13770-13775.
    QIU Z, HUANG H, DU J,TAO X Y, XIA Y, FENG T, GAN Y P, ZHANG W K. Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst support with enhance delectrocatalytic activity and durability for methanoloxidation[J]. J Mater Chem A, 2014, 2(21): 8003-8008.
    FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011, 13(12): 1309-1312.
    LV H F, MU S C, CHENG N C, PAN M. Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon[J]. Appl Catal B: Environ, 2010, 100(1/2): 190-196.
    TONG X L, DONG L L, JIN G Q, WANG Y Y, GUO X Y. Electrocatalytic performance of Pd nanoparticles supported on SiC nanowires for methanol oxidation in alkaline media[J]. Fuel Cells, 2011, 11(6): 907-910.
    DHIMAN R, JOHNSON E, SKOU E M, MORGEN P, ANDERSEN S M. SiC nanocrystals as Pt catalyst supports for fuel cell applications[J]. J Mater Chem A, 2013, 1(19): 6030-6036.
    LIU Z W, SHI Q Q, PENG F, WANG H J, YU H, LI J C, WEI X Y. Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium[J]. Catal Commun, 2012, 22: 34-38.
    LIU Z W, SHI Q Q, PENG F, WANG H J, ZHANG R F, YU H. Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells[J]. Electrochem Commun, 2012, 16(1): 73-76.
    KRIENER M, MURANAKA T, KATO J, REN Z A, AKIMITSU J, MAENO Y. Superconductivity in heavily boron-doped silicon carbide[J]. Sci Technol Adv Mater, 2008, 9(4): 044205.
    董莉莉, 王英勇, 童希立, 靳国强, 郭向云. 硼掺杂SiC的制备、表征及其可见光分解水产氢性能[J]. 物理化学学报, 2014, 30(1): 135-140. ( DONG Li-li, WANG Ying-yong, TONG Xi-li, JIN Guo-qiang, GUO Xiang-yun. Synthesis and characterization of boron-doped SiC for visible light driven hydrogen production[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 135-140.)
    DONG L L, TONG X L, WANG Y Y, GUO X N, JIN G Q, Guo X Y. Promoting performance and CO tolerance of Pt nanocatalyst for direct methanol fuel cells by supporting on high-surface-area silicon carbide[J]. J Solid State Electrochem, 2014, 18(4): 929-934.
    OSWALD S, WIRTH H. Core-level shifts at B-and Al-doped 6H-SiC studied by XPS[J]. Surf Interface Anal, 1999, 27(3): 136-141.
    SEO W S, KOUMOTO K, ARAI S. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of beta-SiC particles in the system SiO2-C-H2[J]. J Am Ceram Soc, 1998, 81(5): 1255-1261.
    AGATHOPOULOS S. Influence of synthesis process on the dielectric properties of B-doped SiC powders[J]. Ceram Int, 2012, 38(4): 3309-3315.
    XIN Y C, LIU J G, JIE X, LIU W M, LIU F Q, YIN Y, GU J, ZOU Z G. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochim Acta, 2012, 60: 354-358.
    RALPH T R, HARDS G A, KEATING J E, CAMPBELL S A, WILKINSON D P, DAVIS M, STPIERRE J, JOHNSON M C. Low cost electrodes for proton exchange membrane fuel cells-Performance in single cells and Ballard stacks[J]. J Electrochem Soc, 1997, 144(11): 3845-3857.
    PARK S J, PARK J M. Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes[J]. Curr Appl Phys, 2012, 12(5): 1248-1251.
    JEHNG J M, LIU W J, PAN T C, DAI Y M. Preparation of Pt nanoparticles on different carbonaceous structure and their applications to methanol electro-oxidation[J]. Appl Surf Sci, 2013, 268: 425-431.
    MU Y Y, LIANG H P, HU J S, JIANG L, WAN L J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. J Phys Chem B, 2005, 109(47): 22212-22216.
    GUO S J, DONG S J, WANG E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. Acs Nano, 2010, 4(1): 547-555.
  • 加载中
计量
  • 文章访问数:  851
  • HTML全文浏览量:  25
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-03-14
  • 刊出日期:  2014-07-30

目录

    /

    返回文章
    返回