留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备条件对Ru/Ce0.8Zr0.2O2催化剂上CO2甲烷化反应性能的影响

李涛 王胜 高典楠 王树东

李涛, 王胜, 高典楠, 王树东. 制备条件对Ru/Ce0.8Zr0.2O2催化剂上CO2甲烷化反应性能的影响[J]. 燃料化学学报(中英文), 2014, 42(12): 1440-1446.
引用本文: 李涛, 王胜, 高典楠, 王树东. 制备条件对Ru/Ce0.8Zr0.2O2催化剂上CO2甲烷化反应性能的影响[J]. 燃料化学学报(中英文), 2014, 42(12): 1440-1446.
LI Tao, WANG Sheng, GAO Dian-nan, WANG Shu-dong. Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1440-1446.
Citation: LI Tao, WANG Sheng, GAO Dian-nan, WANG Shu-dong. Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1440-1446.

制备条件对Ru/Ce0.8Zr0.2O2催化剂上CO2甲烷化反应性能的影响

详细信息
    通讯作者:

    王胜, 研究员, Tel: (0411)84379323; E-mail: wangsheng@dicp.ac.cn; 王树东, 研究员, Tel: (0411)84379052; E-mail: wangsd@dicp.ac.cn。

  • 中图分类号: R852.82

Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide

  • 摘要: 采用均相法制得Ce0.8Zr0.2O2载体,并以其为载体等体积浸渍制得一系列负载型Ru催化剂。在0.1 MPa、GHSV为10 000 h-1、H2/CO2为3.5(物质的量比)的条件下,对催化剂进行评价。借助TG-DSC、BET、H2-TPR等技术对所制备的载体和催化剂进行表征,结果表明,500 ℃焙烧的载体具有适中的比表面积和孔径并形成了Ce-Zr固溶体,与载体形成弱相互作用的Ru能够显著提高催化剂的活性,适宜的还原方式能促进活性组分的均匀分布。采用500 ℃焙烧的载体浸渍RuCl3溶液,干燥后在400 ℃焙烧,并使用水合肼和H2两次还原后的催化剂活性最高,在290 ℃时,H2转化率可达到93.57%。
  • RAATSCHEN W, PREISS H. Potential and benefits of closed loop ECLS systems on the ISS[J]. Acta Astronaut, 2001, 48(5/12): 411-419.
    DRAYER G E, HOWARD A M. Modeling and simulation of an aquatic habitat for bioregenerative life support research[J]. Acta Astronaut, 2014, 93: 138-147.
    AYDOGAN-CREMASCHIA S, ORCUNB S, BLAUB G, PEKNYA J F, REKLAITISA G V. A novel approach for life-support-system design for manned space missions[J]. Acta Astronaut, 2009, 65(3/4): 330-346.
    BROOKS K P, HUA J L, ZHU H Y, KEE R J. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors[J]. Chem Eng Sci, 2007, 62(4): 1161-1170.
    周抗寒, 傅岚, 韩永强, 李俊荣. 再生式环控生保技术研究及进展[J]. 航天医学与医学工程, 2003, 16(S): 566-572. (ZHOU Kang-han, FU Lan, HAN Yong-qiang, LI Jun-rong. Research and development of technique of regenerative environmental control and life support system[J]. Sapce Medicine & Medical Engineering, 2003, 16(S): 566-572.)
    KENN F. New concepts for the avoidance or utilization of methane in life support systems[J]. Adv Space Res, 2011, 48(3): 457-464.
    RAATSCHEN W, PREISS H. Potential and benefits of closed loop ECLS systems on the ISS[J]. Acta Astronaut, 2001, 48(5/12): 411-419.
    孟运余, 尚传勋. 二氧化碳甲烷化还原技术研究[J]. 航天医学与医学工程, 1994, 7(2): 115-120. (MENG Yun-yu, SHANG Chuan-xun. A study on CO2 methanation reduction technology[J]. Space Medicine & Medical Engineering, 1994, 7(2): 115-120.)
    刘静霞, 侯文华. CO2还原钌催化剂的研究[J]. 航天医学与医学工程, 2004, 17(6): 457-460. (LIU Jing-xia, HOU Wen-hua. Study on Ru-based catalyst used in reductive reaction of CO2[J].Space Medicine & Medical Engineering, 2004, 17(6): 457-460.)
    LUNDE P J, KESTER F L. Carbon dioxide methanation on a ruthenium catalyst[J]. Ind Eng Chem Process Des Dev, 1974, 13(1): 21-33.
    PRAIRIE M R, RENKEN A, HIGHFIELD J G, THAMPI K R, GRATZEL M. A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium[J]. J Catal, 1991, 129(1): 130-44.
    SHARMA S, HU Z P, ZHANG P, MCFARLAND E W, METIU H. CO2 methanation on Ru-doped ceria[J]. J Catal, 2011, 278(2): 297-309.
    LI D, ICHIKUNI N, SHIMAZU S, UEMATSU T. Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal-support interaction[J]. Appl Catal A: Gen, 1999, 180(1/2): 227-235.
    潘秋实. Ni/CeZrO4催化剂上CO2甲烷化反应及其机理研究[D]. 北京: 中国科学院大学, 2014. (PAN Qiu-shi. Studies on the reaction and mechanism of CO2 methanation on Ni/CeZrO4 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2014.)
    MCKELLAR M G. Mathematical analysis of high-temperature Co-electrolysis of CO2 and O2 production in closed-loop atmosphere revitalization system[R]. Idaho National Laboratory, 2010.
    余建强, 费超, 王平海, 曹峻清. 影响Ru/C催化剂性能的若干因素[J]. 稀有金属材料与工程, 1997, 26(6): 52-55. (YU Jian-qiang, FEI Chao, WANG Ping-hai, CAO Jun-qing. Some factors affecting the properties of Ru/C catalysts[J]. Rare Metal Materials and Engineering, 1997, 26(6): 52-55.)
    MILLS G A, STEFFGEN F W. Catalytic methanation[J]. Catal Revs, 1973, 8(1): 159-210.
    MAZZIERI V, COLOMA-PASCUAL F, ARCOYA A, L'ARGENTIèREA P C, FIGOLI N S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts[J]. Appl Surf Sci, 2003, 210(3/4): 222-230.
    KOOPMAN P G J, KIEBOOM A P G, VAN BEKKUM H. Activation of ruthenium on silica hydrogenation catalysts[J]. React Kinet Catal Lett, 1978, 8(3): 389-393.
    LAWRENCE P B. Leading edge catalyis research[M]. Nova Science Publishers Inc, 2005.
    KOOPMAN P G J, KIEBOOM A P G, VAN BEKKUM H. Characterization of ruthenium catalysts as studied by temperature programmed reduction[J]. J Catal, 1981, 69(1): 172-179.
    BETANCOURT P, RIVES A, HUBAUT R, SCOTT C E, GOLDWASSERA J. A study of the ruthenium-alumina system[J]. Appl Catal A: Gen, 1998, 170(2): 307-314.
    MADHAVARAMA H, IDRISSA H, WENDTB S, KIMB Y D, KNAPPB M, OVERB H, AβMANNC J, LÖFFLERC E, MUHLERC M. Oxidation reactions over RuO2: A comparative study of the reactivity of the(110) single crystal and polycrystalline surfaces[J]. J Catal, 2002, 202(2): 296-307.
    BALINTA I, MIYAZAKIB A, AIKAB K I. Methane reaction with NO over alumina-supported Ru nanoparticles[J]. J Catal, 2002, 207(1): 66-75.
    段世清, 胡兴元, 万体智. TPD和HOT法研究铂原子簇催化剂表面性质[J]. 天然气化工, 1992, 17(1): 3-6. (DUAN Shi-qing, HU Xing-yuan, WAN Ti-zhi. Studies on the platinum clusters surface properties of the catalysts by TPD and HOT[J]. Natural Gas Chemical Industry, 1992, 17(1): 3-6.)
    李新生, 辛勤, 郭燮贤. 利用程序升温还原方法研究钴、钌、钼加氢脱硫催化剂氧化态的还原过程[J]. 燃料化学学报, 1992, 20(4): 435-439. (LI Xin-sheng, XIN Qin, GUO Xie-xian. Temperature programmed reduction of cobalt, ruthenium and molybdenum catalysts for hydrodesulfurization[J]. Journal of Fuel Chemistry and Technology, 1992, 20(4): 435-439.)
    施介华, 徐慧珍. 热处理对负载Pd-Pt双金属及其单金属催化剂的还原性能的影响[J]. 石油化工, 1990, 19(10): 668-672. (SHI Jie-hua, XU Hui-zhen. Effect of thermal treatment on reducibility of Pd, Pt, and Pd-Pt supported on Al2O3[J]. Petrochemical Technology, 1990, 19(10): 668-672.)
    OVE H. Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review[J]. Electrochim Acta, 2013, 93(30): 314-333.
    YU J, MAO D, HAN L, GUO Q, LU G. Synthesis of C2 oxygenates from syngas over monodispersed SiO2 supported Rh-based catalysts: Effect of calcination temperature of SiO2[J]. Fuel Process Technol, 2013, 106(2): 344-349.
    ARNOLDY P, MOULIJN J A. Temperature-programmed reduction of CoO/Al2O3 catalysts[J]. J Catal, 1985, 93(1):38-54.
    张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰. 沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 催化学报, 2012, 33(12): 1958-1964. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chinese Journal of Catalysis, 2012, 33(12): 1958-1964.)
    梁东白, 吴荣安, 白玉珩, 胡爱华, 赵谦思, 冯喜云, 林励吾. 一氧化碳加氢合成烃类产物的研究Ⅰ. 载体效应对Ru催化剂催化性能的影响[J], 燃料化学学报, 1984, 12(2): 97-105. (LIANG Dong-bai, WU Rong-an, BAI Yu-heng, HU Ai-hua, ZHAO Qian-si, FENG Xi-yun, LIN Li-wu. Investigations on the synthesis of hydrocarbons by carbon monoxide hydrogenation I. Influence of the support effect on the catalytic properties of ruthenium catalysts[J]. Journal of Fuel Chemistry and Technology, 1984, 12(2): 97-105.)
    OVERA H, BALMESB O, LUNDGRENC E. Direct comparison of the reactivity of the non-oxidic phase of Ru(0001) and the RuO2 phase in the CO oxidation reaction[J]. Surf Sci, 2009, 603(2): 298-303.
    宫立倩, 陈吉祥, 李正, 张继炎, 刘季. 还原方式及还原温度对甲烷部分氧化镍催化剂结构和反应性能的影响[J]. 燃料化学学报, 2008, 36(2): 192-196. (GONG Li-qian, CHEN Ji-xiang, LI Zheng, ZHANG Ji-yan, LIU Ji. Effect of reduction method and temperature on structure and performance of nickel-based catalysts for partial oxidastion of methane[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 192-196.)
    VENUGOPAL A, SCURRELL M S. Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water-gas shift reaction[J]. Appl Catal A: Gen, 2004, 258(2): 241-249.
    刘化章. 氨合成催化剂-实践与理论[M]. 化学工业出版社, 2007. (LIU Hua-zhang. Ammonia synthesis catalyst-theory and practice[M]. Chemical industry press, 2007.)
  • 加载中
计量
  • 文章访问数:  557
  • HTML全文浏览量:  28
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2014-08-07
  • 刊出日期:  2014-12-30

目录

    /

    返回文章
    返回