留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li改性MnO2及LiMn2O4催化NH3-SCR反应性能研究

孔志坚 王成 丁正南 陈银飞 张泽凯

孔志坚, 王成, 丁正南, 陈银飞, 张泽凯. Li改性MnO2及LiMn2O4催化NH3-SCR反应性能研究[J]. 燃料化学学报(中英文), 2014, 42(12): 1447-1454.
引用本文: 孔志坚, 王成, 丁正南, 陈银飞, 张泽凯. Li改性MnO2及LiMn2O4催化NH3-SCR反应性能研究[J]. 燃料化学学报(中英文), 2014, 42(12): 1447-1454.
KONG Zhi-jian, WANG Cheng, DING Zheng-nan, CHEN Yin-fei, ZHANG Ze-kai. Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1447-1454.
Citation: KONG Zhi-jian, WANG Cheng, DING Zheng-nan, CHEN Yin-fei, ZHANG Ze-kai. Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1447-1454.

Li改性MnO2及LiMn2O4催化NH3-SCR反应性能研究

详细信息
    通讯作者:

    张泽凯, Tel/Fax: (0571)88320767; E-mail: zzk@zjut.edu.cn。

  • 中图分类号: X511

Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3

  • 摘要: 采用高温固相反应法、Pechini合成方法和柠檬酸配位法,制备了系列锂锰复合氧化物LiMn2O4催化剂,应用于NH3-SCR反应,并与固相反应法合成的MnO2进行了比较。采用N2吸附-脱附、扫描电镜、X射线衍射、H2程序升温还原、NH3程序升温脱附、NO程序升温脱附和X射线光电子能谱对LiMn2O4催化剂进行表征。结果表明,引入Li有利于提高锰基催化剂的SCR活性和抗硫性。Pechini法制备LiMn2O4的NO转化率可在130~260 ℃达到90%以上;固相反应法制备LiMn2O4的NO转化率大于90%的温度为90~310 ℃;MnO2的温度窗口则仅为140~280 ℃。与MnO2相比,引入Li可形成LiMn2O4结构,因此,催化剂中更多的锰离子保持在相对较低的价态Mn3+,并调整表面活性氧含量;同时,Li的存在调变了LiMn2O4表面的酸位,从而减少高温下MnO2表面容易发生的NH3非选择性氧化,改善其催化NH3-SCR反应的温度窗口,也增强了抗硫性。
  • BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36.
    LUCA L, ISABELLA N, FORZATTI P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts[J]. Top Catal, 2000, 11/12(1/4): 111-122.
    BRANDENBERGER S, KROCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4): 492-531.
    LI J H, CHANG H Z, MA L, HAO J M, YANG RT. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review [J]. Catal Today, 2011, 175(1): 147-156.
    PENA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. I. Evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431.
    TANG X L, HAO J M, XU W G, LI J H. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catal Commun, 2007, 8(3): 329-334.
    KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269.
    QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 2004, 51(2): 93-106.
    LONG R Q, YANG R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts[J]. Chem Commun, 2002, 3: 452-433.
    CHEN Z H, YANG Q, LI H, LI X H, WANG L F, TSANG S C. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. J Catal, 2010, 276(1): 56-65.
    WAN Y P, ZHAO W R, TANG Y, LI L, WANG H J, CUI Y L, GU J L, LI Y S SHI J L. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Appl Catal B: Environ, 2014, 148-149: 114-122.
    KANG M, PARK E D, KIM J M, YIE J E. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today, 2006, 111(3/4): 236-241.
    LIAN Z H, LIU F D, HE H, SHI X Y, MO J S,WU Z B. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Chem Eng J, 2014, 250: 390-398.
    CASAPU M, KROCHER O, MEHRING M, NACHTEGAAL M, BORA C, HARFOUCHE M, GROLIMUND D. Characterization of Nb-Containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2010, 114(21): 9791-9801.
    MASQUELIER C, TABUCHI M, ADO K, KANNO R, KOBAYASHI Y, MAKI Y, NAKAMURA O, GOODENOUGH J B. Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system[J]. J Solid State Chem, 1996, 123(2): 255-266.
    GADJOV H, GOROVA M, KOTZEVA V, AVDEEV G, UZUNOVA S, KOVACHEVE D. LiMn2O4 prepared by different methods at identical thermal treatment conditions: Structural, morphological and electrochemical characteristics[J]. J Power Sources, 2004, 134(1): 110-117.
    YANG S J, WANG C Z, LI J H,YAN N Q, MA L, CHANG H Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study[J]. Appl Catal B: Environ, 2011, 110: 71-80.
    THACKERAY M M, ROSSOUW M H, GUMMOW R J, LILES D C, PEARCE K, KOCK A D , DAVID W I F, HULLS S. Ramsdellite-MnO2 for lithium batteries: The ramsdellite to spinel transformation[J]. Electrochim Acta, 1993, 38(9): 1259-1267.
    WEI Q L, WANG X Y, YANG X K, SHU H B, JU B W, HU B N, SONG Y F. The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4[J]. J Solid State Electrochem, 2012, 16(7): 3651-3659.
    ZHANG R D, YANG W, LUO N, LI P, LEI Z G, CHEN B H. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites: Effect of A-/B-site substitution and TiO2/CeO2 support[J]. Appl Catal B: Environ, 2014, 146: 94-104.
    KAPTEIJN F, SINGOREDJO L, ANDREINI, A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Cata B: Environ, 1994, 3(2/3): 173-189.
    TANG X, LI J, SUN L, HAO J M. Origination of N2O from NO reduction by NH3 over α-MnO2 and β-Mn2O3[J]. Appl Catal B: Environ, 2010, 99(1/2): 156-162.
    TIAN W, YANG H S, FAN X Y, ZHANG X B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazardous Mater, 2011, 188(1/3): 105-109.
    GROSSALE A, NOVA I, TRONCONI E, CHATTERJEE D, WEIBEL M. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM-5 investigated by transient reaction analysis [J]. J Catal, 2008, 256(2): 312-322.
    ARENA F, TORRE T, RAIMONDO C, PARMALIANA A. Structure and redox properties of bulk and supported manganese oxide catalysts[J]. Phys Chem Chem Phys, 2001, 10: 1911-1917.
    ROY S, VISWANATH B, HEDGE M S, MADRS G. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. J Phys Chem C, 2008, 112(15): 6002-6012.
    LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.
    MARBAN G, VALDES-SOLIS T, FUERTES A, Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4, role of surface NH3 species: SCR mechanism[J]. J Catal, 2004, 226(1): 138-155.
    陈婷, 管斌, 林赫, 朱霖. 原位漫反射傅里叶变换红外光谱研究锰铁基催化剂上低温选择性催化还原反应机理[J]. 催化学报, 2014, 35(3): 294-301.) (CHEN Ting, GUAN Bin, LIN He, ZHU Lin. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301.)
    JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst[J]. Catal Today, 2010, 153(3/4): 84-89.
  • 加载中
计量
  • 文章访问数:  508
  • HTML全文浏览量:  13
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-10
  • 修回日期:  2014-11-05
  • 刊出日期:  2014-12-30

目录

    /

    返回文章
    返回