留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压下甲烷火花放电制乙炔和合成气

张婧 王东江 张家良 郭洪臣

张婧, 王东江, 张家良, 郭洪臣. 大气压下甲烷火花放电制乙炔和合成气[J]. 燃料化学学报(中英文), 2015, 43(02): 235-242.
引用本文: 张婧, 王东江, 张家良, 郭洪臣. 大气压下甲烷火花放电制乙炔和合成气[J]. 燃料化学学报(中英文), 2015, 43(02): 235-242.
ZHANG Jing, WANG Dong-jiang, ZHANG Jia-liang, GUO Hong-chen. Preparation of acetylene and syngas by the atmospheric pressure spark discharge of methane[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 235-242.
Citation: ZHANG Jing, WANG Dong-jiang, ZHANG Jia-liang, GUO Hong-chen. Preparation of acetylene and syngas by the atmospheric pressure spark discharge of methane[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 235-242.

大气压下甲烷火花放电制乙炔和合成气

详细信息
    通讯作者:

    郭洪臣, 男, 教授, E-mail: hongchenguo@163.com; Tel: +86-411-84986120。

  • 中图分类号: O646.9

Preparation of acetylene and syngas by the atmospheric pressure spark discharge of methane

  • 摘要: 用大气压下火花放电方法和发射光谱原位诊断技术, 对CH4直接转化制乙炔和间接转化制合成气进行了研究, 并与介质阻挡放电进行了比较。结果表明, 火花放电具有能量效率高的突出优点, 能够高效地将CH4活化成C原子、H原子和C2等活泼物种。当CH4单独进料时, 能得到以C2H2为主的烃类产物。当CH4与CO2和O2共进料时, 能得到H2/CO比值可调的合成气产物。在用火花放电转化CH4和CO2制合成气时, 添加O2能够避免反应器的结炭问题, 反应温度只需225 ℃, 与常规催化法相比具有明显的低温优势。
  • 余长林, 胡久彪, 杨凯, 周晓春. 制备方法对Ni/CeO2-Al2O3催化剂甲烷部分氧化催化性能的影响[J]. 燃料化学学报, 2013, 41(6): 722-728. (YU Chang-lin, HU Jiu-biao, YANG Kai, ZHOU Xiao-chun. Effects of preparationmethods onthe catalytic performance of Ni/CeO2-Al2O3 catalyst in methane partial oxidation[J]. J Fuel Chem Technol, 2013, 41(6): 722-728.)
    HORN R, WILLIAMS K A, DEGENSTEIN N J, SCHMIDT L D. Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations[J]. J Catal, 2006, 242(1): 92-102.
    郭章龙, 黄丽琼, 储伟, 罗仕忠. 助剂对NiMgAl 催化剂的结构和甲烷二氧化碳重整反应性能的影响[J]. 物理化学学报, 2014, 30(4): 723-728. (GUO Zhang-long, HUANG Li-qiong, CHU Wei, LUO Shi-Zhong, Effects of promoter on NiMgAl catalyst structure and performance for carbon dioxide reforming of methane[J]. Acta Phy-Chim Sin, 2014, 30(4): 723-728.)
    CHOUDHARY V R, MONDAL K C, MULLA S A R. Conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites[J]. Angew Chem Int Ed, 2005, 44(28): 4381-4385.
    吕静, 李振花, 王保伟, 许根慧. 反应器型式对甲烷低温等离子体转化制C2烃的影响[J]. 燃料化学学报, 2005, 33(6): 755-759. (LV Jing, LI Zhen-hua, WANG Bao-wei, XU Gen-hui. Effect of reactor type on methane conversion to C2 hydrocarbons by low temperature plasma[J]. J Fuel Chem Technol, 2005, 33(6): 755-759.)
    WANG K J, LI X S, ZHU A M. A green process for high-concentration ethylene and hydrogen production from methane in a plasma-followed-by-catalyst reactor[J]. Plasma Sci Technol, 2011, 13(1): 77-81.
    SENTEK J, KRAWCZYK K, MLOTEK M, KALCZEWSKA M, KROKER T, KOLB T, SCHENK A, GERICKE K H, SCHMIDT S K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges[J]. Appl Catal B: Environ, 2010, 94(1/2): 19-26.
    周军成, 尹燕华, 郑邯勇, 周旭, 徐月, 龚俊松, 张龙龙, 宋光涛. 甲烷氧等离子体直接合成过氧化氢[J]. 高等学校化学学报, 2011, 32(10): 2240-2242. (ZHOU Jun-cheng, YIN Yan-hua, ZHENG Han-yong, ZHOU Xu, XU Yue, GONG Jun-song, ZHANG Long-long, SONG Guang-tao. Direct synthesis of H2O2 using methane-oxygen plasma[J]. Chem J Chin Univ, 2011, 32(10): 2240-2242.)
    董洁, 王丽, 赵越, 张家良, 郭洪臣. 添加气对非平衡等离子体转化低碳烷烃的影响[J]. 高等学校化学学报, 2013, 34(1): 192-197. (DONG Jie, WANG Li, ZHAO Yue, ZHANG Jia-liang, GUO Hong-chen. Effect of additive gases on light alkanes converting under dielectric barrier discharge[J]. Chem J Chin Univ, 2013, 34(1): 192-197.)
    LIU C J, MALLINSON R, LOBBAN L. Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites[J]. Appl Catal A: Gen, 1999, 178(1): 17-27.
    INDARTO A, CHOI J W, LEE H, SONG H K. Effect of additive gases on methane conversion using gliding arc discharge[J]. Energy, 2006, 31(14): 2986-2995.
    SHEN C S, SUN D K, YANG H S. Methane coupling in microwave plasma under atmospheric pressure[J]. J Nat Gas Chem, 2011, 20(4): 449-456.
    MOSHREFI M M, RASHIDI F. Hydrogen production from methane by DC spark discharge: Effect of current and voltage[J]. J Nat Gas Sci Eng, 2014, 16: 85-89.
    ALEKNAVICIUTE I, KARAYIANNIS T G, COLLINS M W, XANTHOS C. Methane decomposition under a corona discharge to generate COx-free hydrogen[J]. Energy, 2013, 59(15): 432-439.
    XU C, TU X. Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor[J]. J Energy Chem, 2013, 22(3): 420-425.
    LI X S, SHI C, WANG K J, ZHANG X L, XU Y, ZHU A M. High yield of aromatics from CH4 in a plasma-followed-by-catalyst (PFC) reactor[J]. AIChE J, 2006, 52(9): 3321-3324.
    MUHAMMAD A M, DAVID H, AREEJ M, SHU X, KARL H. Schoenbach. Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline, and methane[J]. Plasma Chem Plasma P, 2013, 33(1): 271-279.
    WANG Q, SHI H L, YAN B H, JIN Y, CENG Y. Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor[J]. Int J Hydrogen Energy, 2011, 36(14): 8301-8306.
    ZHANG X M, CHA M S. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor[J]. J Phys D: Appl Phys, 2013, 46(41): 415205.
    TAE K K, WON G L. Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system[J]. J Ind Eng Chem, 2012, 18(5): 1710-1714.
    MOSHREFI M M, RASHIDI F, BOZROGZADEH H R, HAGHIGHI M E. Dry reforming of methane by DC spark discharge with a rotating electrode[J]. Plasma Chem Plasma P, 2013, 33(2): 453-466.
    HEINTZE M, MAGUREANU M, KETTLITZ M. Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma[J]. J Appl Phys, 2002, 92(12): 7022-7031.
    PEARSE R W B, GAYCON A G. Identification of molecular spectra[M]. Chapman and Hall: London, 1965: 82-83.
    HARILAL S S, ISSAC R C, BINDHU C V, NAMPOORI V P N, VALLABHAN C P G. Optical emission studies of species in laser-produced plasma from carbon[J]. J Phys D: Appl Phys, 1997, 30(12): 1703-1709.
    KADO S, URASAKI K, SEKINE Y, FUJIMOTO K, NOZAKI T, OKAZAKI K. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18): 2291-2297.
    CHRISTOPHE D B, BERT V, TOM M, JAN V D, SABINE P, ANNEMIE B. Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge[J]. Plasma Process Polym, 2011, 8(11): 1033-1058.
    JANEV R K, REITER D. Collision processes of CHy and CHy+ hydrocarbons with plasma electrons and protons[J]. Phys Plasmas, 2002, 9: 4071-4081.
    HORACEK J, CIZEK M, HOUFEK K, KOLORENC P, DOMCKE W. Dissociative electron attachment and vibrational excitation of H2 by low-energy electrons: Calculations based on an improved nonlocal resonance model. II. Vibrational excitation[J]. Phys Rev A, 2006, 73(2): 022701.
    NAITO S, IKEDA M, ITO N, HATTORI T, GOTO T. Effect of rare gas dilution on CH3 radical density in RF-discharge CH4 plasma[J]. Jpn J Appl Phys, 1993, 32(12A): 5721-5725.
    ICHIKAWA Y, TEII S. Molecular ion and metastable atom formations and their effects on the electron temperature in medium-pressure rare-gas positive-column plasmas[J]. J Phys D: Appl Phys, 1980, 13(11): 2031-2043.
    MCCONKEY J W, MALONE C P, JOHNSON P V, WINSTEAD C, MCKOY V, KANIK I. Electron impact dissociation of oxygen-containing molecules-A critical review[J]. Phys Rep, 2008, 466(1/3): 1-103.
    STEEN M L, BUTOI C I, FISHER E R. Identification of gas-phase reactive species and chemical mechanisms occurring at plasma-polymer surface interfaces[J]. Langmuir, 2001, 17(26): 8156-8166.
  • 加载中
计量
  • 文章访问数:  421
  • HTML全文浏览量:  30
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-09
  • 修回日期:  2014-11-22
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回