留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型Ni-Co-P/CNFs催化剂的制备及释氢性能

李忠 王丽娜 王桂雪 谢广文

李忠, 王丽娜, 王桂雪, 谢广文. 负载型Ni-Co-P/CNFs催化剂的制备及释氢性能[J]. 燃料化学学报(中英文), 2015, 43(03): 372-378.
引用本文: 李忠, 王丽娜, 王桂雪, 谢广文. 负载型Ni-Co-P/CNFs催化剂的制备及释氢性能[J]. 燃料化学学报(中英文), 2015, 43(03): 372-378.
LI Zhong, WANG Li-na, WANG Gui-xue, XIE Guang-wen. Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 372-378.
Citation: LI Zhong, WANG Li-na, WANG Gui-xue, XIE Guang-wen. Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 372-378.

负载型Ni-Co-P/CNFs催化剂的制备及释氢性能

基金项目: 山东省自然科学基金(ZR2011EMM005)。
详细信息
    通讯作者:

    谢广文,Tel:0532-84022883;E-mail:xiegw@qust.edu.cn。

  • 中图分类号: TQ153.2

Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts

  • 摘要: 以纳米碳纤维(CNFs)为基体材料,采用化学镀法在CNFs表面沉积了Ni-Co-P催化剂。研究了催化剂用量,硼氢化钠、氢氧化钠浓度,温度等对碱性硼氢化钠溶液水解释氢的影响。电感耦合等离子体原子发射光谱法(ICP-AES)测试得出负载型Ni-Co-P催化剂含镍13.30%(质量分数,下同)、钴82.25%、磷4.45%。硼氢化钠水解释氢实验结果表明,产氢速率与催化剂用量呈线性关系。当温度为45 ℃、催化剂浓度为7.5 g/L、氢氧化钠浓度为5%、硼氢化钠浓度为2.5%时,氢气释放速率达到最大值18.044 L/(g·min)。通过对负载型催化剂Ni-Co-P/CNFs催化碱性硼氢化钠溶液释放氢气动力学研究表明,该催化剂的活化能Ea为51.57 kJ/mol。
  • HOFFERT M. Governments must pay for clean-energy innovation[J]. Nature, 2011, 472: 137-137.
    SCHLAPBACH L, ZVTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414: 353-358.
    王威燕, 杨运泉, 罗和安, 彭会左, 张小哲, 胡韬. Ni-Co-W-B非晶态催化剂的制备及其加氢脱氧性能[J]. 催化学报, 2011, 32(10): 1645-1650.(WANG Wei-yan, YANG Yun-quan, LUO He-an, PENG Hui-zuo, ZHANG Xiao-zhe, HU Tao. Preparation and hydrodexy genation properities of Ni-Co-W-B amorphous catalyst[J]. Chin J Catal, 2011, 32(10): 1645-1650.)
    SANTOS D M F, SEQUEIRA C A C. Sodium borohydride as a fuel for the future[J]. Renew Sust Energy Rev, 2011, 15(8): 3980-4001.
    王晓磊, 邓文义, 于伟超, 苏亚欣. 污泥微波高温热解条件下富氢气体生成特征研究[J]. 燃料化学学报, 2013, 41(2): 243-250.(WANG Xiao-lei, DENG Wen-yi, YU Wei-chao, SU Ya-xin. Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. J Fuel Chem Technol, 2013, 41(2): 243-250.)
    HUANG Z M, SU A, LIU Y C. Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications[J]. Energy, 2013, 51: 230-236.
    YU L, MATTHEWS M A. A reactor model for hydrogen generation from sodium borohydride and water vapor[J]. Int J Hydrogen Energy, 2014, 39(8): 3830-3836.
    JENA P. Materials for hydrogen storage: Past, present, and future[J]. J Phys Chen Lett, 2011, 2(3): 206-211.
    KWON H J, KIM J, CHO S W, YOO J H, ROH K M, KIM W. The effect of Sc addition on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy[J]. Int J Hydrogen Energy, 2014, 39(20): 10600-10605.
    ZHAO Y P, DING L Z, ZHONG T S, YUAN H T, JIAO L F. Hydrogen storage behavior of 2LiBH4/MgH2 composites improved by the catalysis of CoNiB nanoparticles[J]. Int J Hydrogen Energy, 2014, 39(21): 11055-11060.
    ZHU X L, PEI L C, ZHAO Z Y, LIU B Z, HAN S M, WANG R B. The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2 + x wt.% LaH3(x= 0, 10, 20, and 30) composites[J]. J Alloy Compd, 2013, 577: 64-69.
    LEE J K, ANN H H, YI Y, LEE K W, UHM S, LEE J. A stable Ni-B catalyst in hydrogen generation via NaBH4 hydrolysis[J]. Catal Commun, 2011, 16(1): 120-123.
    ZHENG X P, ZHENG J J, MA Q H, LIU S L, XIN F, LIN X B, XIAO G. Study on dehydrogenation properties of the LiAlH4-NH4Cl system[J]. J Alloy Compd, 2013, 551: 508-511.
    VARIN R A, ZBRONIEC L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects[J]. J Alloy Compd, 2010, 504(1): 89-101.
    EASTON D S, SCHNEIBEL J H, SPEAKMAN S A. Factors affecting hydrogen release from lithium alanate (LiAlH4)[J]. J Alloy Compd, 2005, 398(1/2): 245-248.
    MOHAJERI N, TRAISSI A, ADEBIYI O. Hydrolytic cleavage of ammonia-boranecomplex for hydrogen production[J]. J Power Sources, 2007, 167(2): 482-485.
    KUMAR R H, KE X Z, ZHANG J Z, LIN Z J, VOGEL S C, HARTL M, SINOGEIKIN S, DAEMEN L, CORNELIUS A L, CHEN C F, ZHAO Y S. Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: A combined X-ray, neutron and theoretical investigation[J]. Chem phys lett, 2010, 495(4/6): 203-207.
    FIGEN A K, PISKIN M B, COSKUNER B, IMAMOGLU V. Synthesis, structural characterization, and hydrolysis of Ammonia Borane (NH3BH3) as a hydrogen storage carrier[J]. Int J Hydrogen Energy, 2013, 38(36): 16215-16228.
    WU C, BAI Y, LIU D X, WU F, PANG M L, YI B L. Ni-Co-B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells[J]. Catal Today, 2011, 170(1): 33-39.
    WU C, BAI Y, WU F, YI B L, ZHANG H M. Highly active cobalt-based catalysts in situ prepared from CoX2 (X = Cl-, NO3-) and used for promoting hydrogen generation from NaBH4 solution[J]. Int J Hydrogen Energy, 2010, 35(7): 2675-2679.
    XU D Y, ZHANG H M, YE W. Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst[J]. Catal Commun, 2007, 8(11): 1767-1771.
    DCMIRCI U B, GARN F. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate[J]. J Alloy Compd, 2008, 463(1/2): 107-111.
    ALONSO R P, SICURELLI A, CALLONE E, GARTURAN G, RAJ R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells[J]. J Power Sources, 2007, 165(1): 315-323.
    BAYDAROGLU F, ÖZDEMIR E, HASIMOGLU A. An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4[J]. Int J Hydrogen Energy, 2014, 39(3): 1516-1522.
    OCON J D, TUAN T N, YI Y, LEON R L, LEE J K, LEE J. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles[J]. J Power Sources, 2013, 243: 444-450.
    ZHANG X W, ZHAO J Z, CHENG F Y, LIANG J, TAO Z L, CHEN J. Electroless-deposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution[J]. Int J Hydrogen Energy, 2010, 35(15): 8363-8369.
    DAI H B, LIANG Y, WANG P, YAO X D, RUFFORD T, LU M, CHENG H M. High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride sodium[J]. Int J Hydrogen Energy, 2008, 33(16): 4405-4412.
    ZHU J, LI R, NIU W L, WU Y J, GOU X L. Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride[J]. J Power Sources, 2012, 211(1): 33-39.
    LI Z, LI H L, WANG L N, LIU T Y, ZHANG T, WANG G X, XIE G W. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni-Co-P/ γ-Al2O3)[J]. Int J Hydrogen Energy, 2014, 39(27): 14935-14941.
    KREEVOY M M, JACOBSON R W. The rate of decomposition of NaBH4 in basic aqueous solution[J]. Ventron Alembic, 1979, 15: 2-3.
    ZHAO J Z, MA H, CHEN J. Improved hydrogen generation from alkaline NaBH4 solution using cabon-supported Co-B as catalysts[J]. Int J Hydrogen Energy, 2007, 32(18): 4711-4716.
    LIU Z L, GUO B, CHAN S H, TANG E H, HONG L. Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydridesolutions[J]. J Power Sources, 2008, 176(1): 306-311.
    LIU C H, CHEN B H, HSUEH C L, KU J R, JENG M S, TASU F. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Runanocomposite as catalysts[J]. Int J Hydrogen Energy, 2009, 34(5): 2153-2163.
    VERNEKAR A A, BUGDE S T, TILVE S. Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydriable Co-Co2B and Ni-Ni3B nanocomposites[J]. Int J Hydrogen Energy, 2012, 37(1): 327-334.
    GUO Y P, FENG Q H, MA J T. The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co-Ni-P film catalysts[J]. Appl Surf Sci, 2013, 273: 253-256.
    NIE M, ZOU Y C, HUANG Y M, WANG J Q. Ni-Fe-B catalysts for NaBH4 hydrolysis[J]. Int J Hydrogen Energy, 2012, 37(2): 1568-1576.
    PATEL N, FERNANDES R, BAZZANELLA N, MIOTELLO A. Enhanced hydrogen production by hydrolysis of NaBH4 using "Co-B nanoparticles supported on carbon film" catalyst synthesized by pulsed laser deposition[J]. Catal Today, 2011, 170(1): 20-26.
    ZHU J, LI R, NIU W L, WU Y J, GOU X L. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles[J]. Int J Hydrogen Energy, 2013, 38(25): 10864-10870.
    RAKAP M, KALU E E, ÖZKAR S. Cobalt-nickel-phosphorus supported on Pd-activated TiO2 (Co-Ni-P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydridesolution[J]. J Alloy Compd, 2011, 509(25): 7010-7021.
    BILEN M, GVRVM, AKANYIRIM. Role of NaCl in NaBH4 production and its hydrolysis[J]. Energy Convers Manage, 2013, 72: 134-140.
  • 加载中
计量
  • 文章访问数:  398
  • HTML全文浏览量:  12
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-13
  • 刊出日期:  2015-03-30

目录

    /

    返回文章
    返回