留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松木粉气流床气化特性实验研究

冯宜鹏 王小波 曾碧凡 赵增立 李海滨 郑安庆 黄振

冯宜鹏, 王小波, 曾碧凡, 赵增立, 李海滨, 郑安庆, 黄振. 松木粉气流床气化特性实验研究[J]. 燃料化学学报(中英文), 2015, 43(05): 589-597.
引用本文: 冯宜鹏, 王小波, 曾碧凡, 赵增立, 李海滨, 郑安庆, 黄振. 松木粉气流床气化特性实验研究[J]. 燃料化学学报(中英文), 2015, 43(05): 589-597.
FENG Yi-peng, WANG Xiao-bo, ZENG Bi-fan, ZHAO Zeng-li, LI Hai-bin, ZHENG An-qing, HUANG Zhen. Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor[J]. Journal of Fuel Chemistry and Technology, 2015, 43(05): 589-597.
Citation: FENG Yi-peng, WANG Xiao-bo, ZENG Bi-fan, ZHAO Zeng-li, LI Hai-bin, ZHENG An-qing, HUANG Zhen. Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor[J]. Journal of Fuel Chemistry and Technology, 2015, 43(05): 589-597.

松木粉气流床气化特性实验研究

基金项目: 广东省科技计划(2012B05050007)。
详细信息
    通讯作者:

    赵增立, 男, 研究员, 从事城市废弃物处理与资源化利用技术研究, E-mail: zhaozl@ms.giec.ac.cn。

  • 中图分类号: TK6

Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor

  • 摘要: 在气流床气化实验装置上进行了松木粉气化特性的研究。考察了温度、氧当量比、水蒸气配比对气体产物的成分、气化特性和固体产物的微观形态及成分的影响,结果表明,随着温度的升高,CO与H2浓度显著升高,CO2与CH4浓度明显下降,碳转化率、产气率、产气热值有所提高;氧当量比从0.2上升至0.5时,CO与H2浓度降低超过10%,CO2浓度则上升100%以上,碳转化率提高至92.9%,产气率有所上升,而产气热值则降低超过20%;水蒸气配比从0增大至0.58时,H2/CO体积比由0.63提高为1.40,碳转化率、产气率和产气热值均呈现先增大后减小趋势。由SEM照片可以看出,固体残渣主要由类球状或块状结构与纤维团聚结构两部分组成。温度升高使残渣颗粒由呈现不规则形状逐渐向球形转化,氧当量比的增大使残渣中类球状颗粒表面孔洞与裂缝明显增多直至破碎。
  • HOLLADAY J D, HU J, KING D L, WANG Y. An overview of hydrogen production technologies[J]. Catal Today, 2009, 139(3): 244-260.
    TANKSALE A, BELTRAMINI J N, LU G Q M. A review of catalytic hydrogen production processes from biomass[J]. Renew Sus Energy Rev, 2010, 14(1): 166-182.
    WANG A, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7): 1377-1386.
    DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts[J]. Appl Catal B: Environ, 2003, 43(1): 13-26.
    SHABAKER J W, DAVDA R R, HUBER G W, CORTRIGHT R D, DUMESIC J A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts[J]. J Catal, 2003, 215(2): 344-352.
    LIU X, SHEN K, WANG Y, WANG Y, GUO Y, GUO Y, YONG Z, LU G. Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol[J]. Catal Commun, 2008, 9(14): 2316-2318.
    KIM H D, PARK H J, KIM T W, JEONG K E, CHAE H J, JEONG S Y, LEE C H, KIM C U. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts[J]. Int J Hydrogen Energy, 2012, 37(10): 8310-8317.
    JEONG K E, KIM H D, KIM T W, KIM J W, CHAE H J, JEONG S Y, KIM C U. Hydrogen production by aqueous phase reforming of polyols over nano- and micro-sized mesoporous carbon supported platinum catalysts[J]. Catal Today, 2014, 232: 151-157.
    KOICHUMANOVA K, VIKLA A K K, DE VLIEGER D J M, SESHAN K, MOJET B L, LEFFERTS L. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen[J]. ChemSusChem, 2013, 6(9): 1717-1723.
    IZQUIERDO U, WICHERT M, KOLB G, BARRIO V L, ZAPF R, ZIOGAS A, NEUBERG S, ARIAS P L, CAMBRA J F. Micro reactor hydrogen production from ethylene glycol reforming using Rh catalysts supported on CeO2 and La2O3 promoted α-Al2O3[J]. Int J Hydrogen Energy, 2014, 39(10): 5248-5256.
    IZQUIERDO U, WICHERT M, BARRIO V L, KOLB G. Sustainable syngas production from ethylene glycol reforming processes using Rh-based catalysts in microreactors[J]. Appl Catal B: Environ, 2014, 152-153: 19-27.
    LIU J, SUN B, HU J, PEI Y, LI H, QIAO M. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: Metal-support interaction and excellent intrinsic activity[J]. J Catal, 2010, 274(2): 287-295.
    HUBER G W, SHABAKER J W, EVANS S T, DUMESIC J A. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts[J]. Appl Catal B: Environ, 2006, 62(3/4): 226-235.
    TUPY S A, CHEN J G, VLACHOS D G. Comparison of ethylene glycol steam reforming over Pt and NiPt catalysts on various supports[J]. Top Catal, 2013, 56(18/20): 1644-1650.
    TUPY S A, KARIM A M, BAGIA C, DENG W, HUANG Y, VLACHOS D G, CHEN J G. Correlating ethylene glycol reforming activity with in situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts[J]. ACS Catal, 2012, 2(11): 2290-2296.
    SHABAKER J W, HUBER G W, DUMESIC J A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J]. J Catal, 2004, 222(1): 180-191.
    SHABAKER J W, SIMONETTI D A, CORTRIGHT R D, DUMESIC J A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies[J]. J Catal, 2005, 231(1): 67-76.
    PAN G, NI Z, CAO F, LI X. Hydrogen production from aqueous-phase reforming of ethylene glycol over Ni/Sn/Al hydrotalcite derived catalysts[J]. Appl Clay Sci, 2012, 58: 108-113.
    VAN HAASTERECHT T, LUDDING C C I, DE JONG K P, BITTER J H. Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions[J]. J Catal, 2014, 319: 27-35.
    ADHIKARI S, FERNANDO S D, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts[J]. Energy Fuels, 2008, 22(2): 1220-1226.
    CHU X, LIU J, SUN B, DAI R, PEI Y, QIAO M, FAN K. Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method[J]. J Mol Catal A: Chem, 2011, 335(1/2): 129-135.
    SANCHEZ E A, COMELLI R A. Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina[J]. Int J Hydrogen Energy, 2014, 39(16): 8650-8655.
    GUO Y, AZMAT M U, LIU X, WANG Y, LU G. Effect of support’s basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR[J]. Appl Energy, 2012, 92: 218-223.
    金明善, 徐秀峰, 翁永根, 索掌怀. CeO2在Al2O3及TiO2载体上的分散[J]. 烟台大学学报(自然科学与工程版), 2003, 16(1): 49-53.(JIN Ming-shan, XU Xiu-feng, WENG Yong-gen, SUO Zhang-huai. Dispersion of CeO2 on Al2O3 and TiO2[J]. J Yantai Univ Nat Sci Eng Ed, 2003, 16(1): 49-53.)
    FRÉTY R, LÉVY P J, PERRICHON V, PITCHON V, PRIMET M, ROGEMOND E, ESSAYEM N, CHEVRIER M, GAUTHIER C, MATHIS F. Preparation of alumina supported ceria. I: Selective measurement of the surface area of ceria and free alumina[J]. Stud Surf Sci Catal, 1995, 96: 405-418.
    PERRICHON V, LAACHIR A, BERGERET G, FRÉTY R, TOURNAYAN L, TOURET O. Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen[J]. J Chem Soc Faraday Trans, 1994, 90(5): 773-781.
    DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002, 234(1/2): 271-282.
    于强强, 董园园, 廖卫平, 金明善, 何涛, 索掌怀, CeO2-Al2O3负载金催化剂用于水煤气变换反应的催化活性[J]. 燃料化学学报, 2010, 38(2): 223-229.(YU Qiang-qiang, DONG Yuan-yuan, LIAO Wei-ping, JIN Ming-shan, HE Tao, SUO Zhang-huai. Preparation of ceria-alumina and catalytic activity of gold catalyst supported on ceria-alumina for water gas shift reaction[J]. J Fuel Chem Technol, 2010, 38(2): 223-229.)
  • 加载中
计量
  • 文章访问数:  375
  • HTML全文浏览量:  18
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 刊出日期:  2015-05-30

目录

    /

    返回文章
    返回