留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于煤制天然气的气化-热解耦合系统模拟研究及能量分析

李超 代正华 杨骥 于广锁 王辅臣

李超, 代正华, 杨骥, 于广锁, 王辅臣. 用于煤制天然气的气化-热解耦合系统模拟研究及能量分析[J]. 燃料化学学报(中英文), 2015, 43(07): 779-789.
引用本文: 李超, 代正华, 杨骥, 于广锁, 王辅臣. 用于煤制天然气的气化-热解耦合系统模拟研究及能量分析[J]. 燃料化学学报(中英文), 2015, 43(07): 779-789.
LI Chao, DAI Zheng-hua, YANG Ji, YU Guang-suo, WANG Fu-chen. Modelling and energy analysis of an integrated coal gasification and pyrolysis system for synthetic natural gas[J]. Journal of Fuel Chemistry and Technology, 2015, 43(07): 779-789.
Citation: LI Chao, DAI Zheng-hua, YANG Ji, YU Guang-suo, WANG Fu-chen. Modelling and energy analysis of an integrated coal gasification and pyrolysis system for synthetic natural gas[J]. Journal of Fuel Chemistry and Technology, 2015, 43(07): 779-789.

用于煤制天然气的气化-热解耦合系统模拟研究及能量分析

基金项目: Supported by the National Key State Basic Research Development Program of China (973 Program, 2010CB227000) and the National High Technology Research and Development Program of China (863 Program, 2008AA052310).
详细信息
    通讯作者:

    代正华

  • 中图分类号: TQ546

Modelling and energy analysis of an integrated coal gasification and pyrolysis system for synthetic natural gas

Funds: Supported by the National Key State Basic Research Development Program of China (973 Program, 2010CB227000) and the National High Technology Research and Development Program of China (863 Program, 2008AA052310).
  • 摘要: 大规模煤制天然气系统中气流床气化是一种重要且富吸引力的技术。对一种气流床气化-热解耦合系统进行了研究。该系统中气化炉分为两段:主要进行煤焦气化的气化段以及主要发生煤热解的热解段。采用流程模拟方法建立了耦合系统模型并与煤气化废锅系统进行了比较。同时,考察了操作条件对耦合系统气化性能的影响,提出了优化的操作条件。结果显示,气化温度1400 ℃时,耦合系统优化的蒸汽煤比为250~300 kg(steam)·t-1(dry coal)。耦合系统的冷煤气效率为88.18%,高于气化废锅系统(84.14%),且其消耗指标均有所降低。但耦合系统的气化性能受到热解段焦油和CH4产率很大的影响。耦合系统总体能量利用效率为92.26%,略低于气化废锅系统(93.39%),但其火用效率比气化废锅系统高2.2%。这说明通过热解-气化的耦合方式能够有效回收气化高温合成气中的显热并提高其能量品位。
  • National Bureau of Statistics of China. Annual data of total energy consumption[EB/OL]. http://data.stats.gov.cn/english/easyquery.htm?cn=C01, 2014.
    COUNCIL G T. World gasification database[DB/OL]. http://www.gasification.org/what-is-gasification/world-database/, 2012.
    AMICK P. E-Gas technology 2010 outlook[C]// Gasification Technology Conference 2010. Washington D.C., U.S.A. 2010.
    XU S S, REN Y Q, WANG B M, XU Y, CHEN L, WANG X L, XIAO T C. Development of a novel 2-stage entrained flow coal dry powder gasifier[J]. Appl Energy, 2014, 113: 318-323.
    HIGMAN C, BURGT M V. Gasification (Second ed.)[M]. Oxford: Gulf Professional Publishing, 2007: 139.
    YU Z H, WANG Y F, YU G S, WANG F C, CHEN X L, DAI Z H, GUO X L, LIANG Q F, LI W F, GONG X, LIU H F. Two-stage gasification apparatus coupled with heat recovery and washing and its applications: US, 7794514B2[P]. 2010-9-14.
    ALBERT T. E-STR technology development for lignite gasification[C]// Gasification Technology Conference 2010. Washington D.C., U.S.A. 2010.
    GAO J S. Pyrolysis and coking of coal and processing of the tar[M]. Beijing: Chemical Industry Press, 2010: 6.
    MERRICK D. Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter[J]. Fuel, 1983, 62(5): 534-539.
    DAI Z H, GONG X, GUO X L, LIU H F, WANG F C, YU Z H. Pilot-trial and modelling of a new type of pressurized entrained-flow pulverized coal gasification technology[J]. Fuel, 2008, 87(10/11): 2304-2313.
    DAI Z H, GONG X, WANG F C, YU G S, TAN K R, YU Z H. Thermodynamic analysis of entrained-flow pulverized coal gasification by Gibbs free energy minimization[J]. J Fuel Chem Technol, 2005, 33(2): 129-133.
    STEFANO J M. Evaluation and modification of Aspen fixed-bed gasifier 1 models for inclusion in an integrated gasification combined-cycle power plant simulation[R]. West Virginia: Morgantown Energy Technology Center, 1985.
    LIU T F, FANG Y T, WANG Y. Rapid pyrolysis of coal at high temperature[J]. J Fuel Chem Technol, 2009, 37(1): 20-25.
    FREIHAUT J D, PROSCIA W M, SEERY D J. Chemical characteristics of tars produced in a novel low-severity, entrained-flow reactor[J]. Energy Fuels, 1989, 3(6): 692-703.
    HAYASHI J I, TAKAHASHI H, IWATSUKI M, ESSAKI K, TSUTSUMI A, CHIBA T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79(3/4): 439-447.
    HAYASHI J I, IWATSUKI M, MORISHITA K, TSUTSUMI A, LI C Z, CHIBA T. Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor[J]. Fuel, 2002, 81(15): 1977-1987.
    CHEN J C, CASTAGNOLI C, NIKSA S. Coal devolatilization during rapid transient heating. 2. Secondary pyrolysis[J]. Energy Fuels, 1992, 6(3): 264-271.
    MATSUOKA K, MA Z X, AKIHO H, ZHANG Z G, TOMITA A. High-pressure coal pyrolysis in a drop tube furnace[J]. Energy Fuels, 2003, 17(4): 984-990.
    XU W C, MATSUOKA K, AKIHO H, KUMAGAI M, TOMITA A. High pressure hydropyrolysis of coals by using a continuous free-fall reactor[J]. Fuel, 2003, 82(6): 677-685.
    ZHU Z B, MA Z H, ZHANG C F, NI Y, JIN H H. Flash pyrolysis of brown coal for obtaining liquid and gaseous hydrocarbons (I) Effect of pyrolysis atmospheres[J]. J Chem Ind Eng (China), 1992, 43(6): 719-725.
    GAO S P, WANG J F, ZHAO J T, WANG Z Q, FANG Y T, HUANG J J. CH4 release character from pressurized fast pyrolysis of lignite in CO atmosphere[J]. J Fuel Chem Technol, 2014, 42(6): 641-649.
    MORAN M J, SHAPIRO H N, BOETTNER D D, BAILEY M B. Fundamentals of engineering thermodynamics[M]. New York: John Wiley & Sons, Inc., 2000.
    ZHU M S. Exergy analysis of energy systems[M]. Beijing: Tsinghua University Press, 1988: 125.
  • 加载中
计量
  • 文章访问数:  442
  • HTML全文浏览量:  21
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-07-02
  • 刊出日期:  2015-07-30

目录

    /

    返回文章
    返回