留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4纳米催化剂的制备及其F-T合成性能研究

涂军令 徐勇军 定明月 王铁军 马隆龙 王敏龙

涂军令, 徐勇军, 定明月, 王铁军, 马隆龙, 王敏龙. Fe3O4纳米催化剂的制备及其F-T合成性能研究[J]. 燃料化学学报(中英文), 2015, 43(07): 839-845.
引用本文: 涂军令, 徐勇军, 定明月, 王铁军, 马隆龙, 王敏龙. Fe3O4纳米催化剂的制备及其F-T合成性能研究[J]. 燃料化学学报(中英文), 2015, 43(07): 839-845.
TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, MA Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2015, 43(07): 839-845.
Citation: TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, MA Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2015, 43(07): 839-845.

Fe3O4纳米催化剂的制备及其F-T合成性能研究

基金项目: 国家自然科学基金(U1362109, 51206172); 国家重点基础研究发展规划(973 计划, 2013CB228105); 广东省科技计划项目(2013B010405012); 中国科学院战略性先导科技专项课题(XDA05010108)。
详细信息
    通讯作者:

    定明月

  • 中图分类号: O643

Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis

  • 摘要: 基于溶剂热合成体系,制备了不同形貌的Fe3O4微球和纳米片催化剂,考察了水热合成条件对Fe3O4晶粒形貌的影响,并研究了Fe3O4纳米催化剂的费托合成(F-T)性能。结果表明,成核和晶体生长速率是控制Fe3O4晶体形貌的关键。与传统的沉淀铁催化剂相比,Fe3O4纳米催化剂更容易还原和向活性相转变,因此,具有更高的F-T反应活性、低碳烯烃选择性及C5+选择性;Fe3O4微球催化剂比纳米片催化剂更易维晶粒的稳定,具有更高的反应活性和稳定性。
  • DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3/4): 227-241.
    LIU Z P, HU P. A new insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2002, 124(39): 11568-11569.
    JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol, 2014, 4(8): 2210-2229.
    STEYNBERG A, DRY M. Fischer-Tropsch technology[M]. Elsevier, Amsterdam, 2004.
    DAVIS B H, OCCELLI M L. Fischer-Tropsch synthesis, catalysts and catalysis[M]. Elsevier, Amsterdam, 2006.
    ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. Chem Cat Chem, 2010, 2(9): 1030-1058.
    BELL A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.
    MURZIN D Y. Size-dependent heterogeneous catalytic kinetics[J]. J Mol Catal A: Chem, 2010, 315(2): 226-230.
    SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.
    OBRIEN R J, XU L G, SPICER R L, DAVIS B H. Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy Fuel, 1996, 10(4): 921-926.
    RIEDEL T, SCHULZ H, SCHAUB G, JUN K W, HWANG J S, LEE K W. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J]. Top Catal, 2003, 26(1/4): 41-54.
    BRATLIE K M, LEE H, KOMVOPOULOS K, YANG P D, SOMORJAI G A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity[J]. Nano Lett, 2007, 7(10): 3097-3101.
    YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.
    CALDERONE V R, SHIJU N R, CURULLA-FERRE D, CHAMBREY S, KHODAKOV A, ROSE A, THIESSEN J, JESS A, ROTHENBERG G. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts [J]. Angew Chem Int Edit, 2013, 52(16): 4397-4401.
    PATZKE G R, ZHOU Y, KONTIC R, CONRAD F. Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations[J]. Angew Chem Int Edit, 2011, 50(4): 826-859.
    POLARZ S. Shape matters: Anisotropy of the morphology of inorganic colloidal particles-synthesis and function[J]. Adv Funct Mater, 2011, 21(17): 3214-3230.
    CHEN M, WU B H, YANG J, ZHENG N F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals[J]. Adv Mat, 2012, 24(7): 862-879.
    SCHMIDT E, VARGAS A, MALLAT T, BAIKER A. Shape-selective enantioselective hydrogenation on Pt nanoparticles[J]. J Am Chem Soc, 2009, 131(34): 12358-12367.
    VAN BOKHOVEN J A. Understanding structure-performance relationships in oxidic catalysts: Controlling shape and tuning performance[J]. ChemCatChem, 2009, 1(3): 363-364.
    XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.
    ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined Facets[J]. Angew Chem Int Edit, 2012, 51(3): 602-613.
    BUKUR D B, MUKESH D, PATEL S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1990, 29(2): 194-204.
    LAMER V K. Nucleation in phase transitions[J]. Ind Eng Chem, 1952, 44(6): 1270-1277.
    LUO M S, O'BRIEN R, DAVIS B H. Effect of palladium on iron Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2004, 98(1): 17-22.
    KANG S H, BAE J W, PRASAD P S S, JUN K W. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catal Lett, 2008, 125(3/4): 264-270.
    DAVIS B H. Fischer-Tropsch synthesis: Reaction mechanisms for iron catalysts[J]. Catal Today, 2009, 141(1-2): 25-33.
    HERRANZ T, ROJAS S, PEREZ-ALONSO F J, OJEDA M, TERREROS P, FIERRO J L G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal, 2006, 243(1): 199-211.
    GALVIS H M T, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215.
  • 加载中
计量
  • 文章访问数:  437
  • HTML全文浏览量:  20
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-06-27
  • 刊出日期:  2015-07-30

目录

    /

    返回文章
    返回