留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响

曹晓峰 张琦 姜东 刘琪英 马隆龙 王铁军 李德宝

曹晓峰, 张琦, 姜东, 刘琪英, 马隆龙, 王铁军, 李德宝. 焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响[J]. 燃料化学学报(中英文), 2015, 43(08): 970-979.
引用本文: 曹晓峰, 张琦, 姜东, 刘琪英, 马隆龙, 王铁军, 李德宝. 焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响[J]. 燃料化学学报(中英文), 2015, 43(08): 970-979.
CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 970-979.
Citation: CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 970-979.

焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响

基金项目: 国家自然科学基金(51376185);国家重点基础研究发展规划(973计划,2012CB215304);国家高技术研究发展计划(863计划,2012AA101806);广东省自然科学基金(S2013010011612)。
详细信息
    通讯作者:

    姜东,副研究员,E-mail:jdred@sxicc.ac.cn;刘琪英,副研究员,,E-mail:liuqy@ms.giec.ac.cn。

  • 中图分类号: O643.32

Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols

  • 摘要: 采用水热法合成了纳米棒状La(OH)3载体,通过湿式浸渍方法制备了10%Ni/La(Ⅲ)负载型催化剂,考察了500~800℃不同焙烧温度对于催化剂氢解山梨醇制备低碳二元醇的影响,结合XRD、SEM/EDS、BET、H2-TPR-MS、CO/CO2-TPD-MS、TG和ICP-AES等表征手段对Ni/La(Ⅲ)催化剂的构效关系进行了分析。结果表明,Ni/La(Ⅲ)催化剂表现出高的氢解反应活性,在较低的焙烧温度下(500℃)催化剂主要以NiO/La2O2CO3结构形式存在。随着焙烧温度的升高,NiO/La2O2CO3逐渐向La2NiO4-La2O3进行转变。碱性是影响不同催化剂活性的决定因素,高的焙烧温度促进了催化剂中强碱性位的生成,显著提高了氢解反应活性,但对液体产物的选择性无明显影响,在220℃、4MPa H2、1.5h的条件下,山梨醇完全转化,低碳二元醇的产率可达到53%。低的焙烧温度则增加了催化剂的水热稳定性。催化剂的失活主要归结于活性金属粒子在水相反应中从载体表面脱落而发生团聚,降低氢解反应活性。
  • HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.
    The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL). Top value added chemicals from biomass[Z]. 2004.
    CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.
    KOBAYASHI H, HOSAKA Y, HARA K, FENG B, HIROSAKI Y, FUKUOKA A. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Green Chem, 2014, 16(2): 637-644.
    JIN X, JESSICA L, BALA S, REN S Q, RAGHUNATH V C. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals[J]. ACS Nano, 2012, 7(2): 1309-1316.
    AGNIESZKA M R, KAMIL W, REGINA P. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem, 2012, 51(11): 2564-2601.
    马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化选择转化多羟基化合物制备商附加值化学品研究进展[J]. 催化学报, 2013, 34(3): 492-507. (MA Ji-ping, YU Wei-qing, WANG Min, JIA Xiu-quan, LU Fang, XU Jie. Advances in selective catalytic transformation of ployols to value-added chemicals[J]. Chin J Catal, 2013, 34(3): 492-507.)
    刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042. (LIU Qi-ying, LIAO Yu-he, SHI Ning, WANG Tie-jun, MA Long-long, ZHANG Qi. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chem Ind Eng Prog, 2013, 32(5): 1035-1042.)
    KEYI W, MARTIN C H, TODD D F. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind Eng Chem Res, 1995, 34(11): 3766-3771.
    SOHOUNLOUE D K, MONTASSIER C, BARBIER J. Catalytic hydrogenolysis of sorbitol[J]. React Kinet Catal Lett, 1983, 22(3/4): 391-397.
    BANU M, SIVASANKER S, SANKARANARAYANAN T M, VENUVANALINGAM P. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catal Commun, 2011, 12(7): 673-677.
    BANU M, VENUVANALINGAM P, SHANMUGAM R, VISWANATHAN B, SIVASANKER S. Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY[J]. Top Catal, 2012, 5511/13): 897-907.
    ZHAO L, ZHOU J H, SUI Z J, ZHOU X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chem Eng Sci, 2010, 65(1): 30-35.
    ZHAO L, ZHOU J H, CHEN H, ZHANG M G, SUI Z J, ZHOU X G. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination[J]. Korean J Chem Eng, 2010, 27(5): 1412-1418.
    ZHOU J H, ZHANG M G, ZHAO L, ZHOU J H. Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol[J]. Catal Today, 2009, 147(S): 225-229.
    CHEN X G, WANG X C, YAO S X, MU X D. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts [J]. Catal Commun, 2013, 39(5): 86-89.
    HUANG Z W, CHEN J, JIA Y Q, LIU H L, XIA C G, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts[J]. Appl Catal B: Environ, 2014, 147: 377-386.
    SUN J Y, LIU H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catal Today, 2014, 234: 75-82.
    LIU H L, HUANG Z W, XIA C G, JIA Y Q, CHEN J, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 10(6): 2918-2928.
    SUN H, DING Y Q, DUAN J Z, ZHANG Q J, WANG Z Y, LOU H, ZHENG X M Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst[J]. Bioresour Technol, 2010, 101(3): 953-958.
    YANG G X, YU H, HUANG X Y, PENG F, WANG H J. Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol[J]. Appl Catal B: Environ, 2012, 127: 89-98.
    ROELOFS J C A A, LENSVELD D J, DILLEN A J, JONG K P. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation[J]. J Catal, 2001, 203(1): 184-191.
    GAO J, HOU Z Y, GUO J Z, ZHU Y H, ZHENG X M. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor[J]. Catal Today, 2008, 131(1/4): 278-284.
    COSTA C N, ANASTASIADOU T, EFSTATHIOU A M. The selective catalytic reduction of nitric oxide with methane over La2O3-CaO systems: Synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques[J]. J Catal, 2000, 194(2): 250-265.
    MUHAMMAD B I C, MOHAMMAD M. H, PAUL A C. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts[J]. Appl Catal A: Gen, 2011, 405: 84-92.
    MU Q T, WANG Y D. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods[J]. J Alloy Comp, 2011, 509(2): 396-401.
    WANG F, SHI R J, LIU Z Q, SHANG P J, PANG X Y, SHEN S, FENG Z C, LI C, SHEN W J. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catal, 2013, 3(5): 890-894.
    ZHANG X H, WANG T J, MA L L, ZHANG Q, YU Y X, LIU Q Y. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation[J]. Catal Commun, 2012, 33: 15-19.
    RACHA A, TOMOO M, TAKATO M, KOICHIRO J, KIYOTOMY K. Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8): 1345-1347.
    SUN C W, XIAO G L, LI H, CHEN L Q. Mesoscale organization of flower-Like La2O2CO3 and La2O3 microspheres[J]. J Am Cera Soc, 2007, 90(8): 2573-2581.
    SUN R Y, WANG T T, ZHENG M Y, DENG W Q, PANG J F, WANG A Q, WANG X D, ZHANG T. Versatile nickel-lanthanum(III) catalyst for direct conversion of cellulose to glycols[J]. ACS Catal, 2015, 5: 874-883.
  • 加载中
计量
  • 文章访问数:  391
  • HTML全文浏览量:  24
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-26
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回