留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体氧化物直接碳燃料电池阳极反应过程分析

刘国阳 周安宁 张亚婷 蔡江涛 党永强 邱介山

刘国阳, 周安宁, 张亚婷, 蔡江涛, 党永强, 邱介山. 固体氧化物直接碳燃料电池阳极反应过程分析[J]. 燃料化学学报(中英文), 2015, 43(09): 1100-1105.
引用本文: 刘国阳, 周安宁, 张亚婷, 蔡江涛, 党永强, 邱介山. 固体氧化物直接碳燃料电池阳极反应过程分析[J]. 燃料化学学报(中英文), 2015, 43(09): 1100-1105.
LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(09): 1100-1105.
Citation: LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(09): 1100-1105.

固体氧化物直接碳燃料电池阳极反应过程分析

基金项目: 国家自然科学基金(21276207); NSFC-新疆联合基金重点项目(U1203292); 陕西省自然科学基础研究计划(2014JM2043)。
详细信息
    通讯作者:

    周安宁,教授,Tel:029-85583549,E-mail:zhouanning2004@aliyun.com.cn。

  • 中图分类号: TM911.4

Analysis of the reaction process in solid oxide direct carbon fuel cell anode

  • 摘要: 以氧化钇稳定的氧化锆(YSZ)为电解质组装成直接碳燃料电池(DCFC),分别以活性炭(AC)、石墨(G)、神府半焦(SC)作为DCFC燃料,研究了碳燃料的特性、电池操作温度以及阳极反应气氛等对DCFC阳极反应过程的影响。结果表明,三种碳燃料在空气、CO2气氛中氧化反应活性顺序为AC > SC > G,当三种碳材料作为DCFC燃料时,活性炭作为燃料的DCFC性能最好,半焦燃料次之,石墨作为燃料的DCFC性能最差,而且燃料反应活性与其表面含氧官能团、孔隙结构有关;DCFC的阳极反应过程存在碳燃料直接氧化为CO2、CO2与C反应转化为CO,以及CO氧化为CO2等。
  • DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.
    CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.
    ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.
    GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.
    WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.
    TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.
    ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.
    FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.
    ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.
    LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.
    LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.
    LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.
    NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.
    WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.
    CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.
    DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.
    ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.
    WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.
    SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.
    KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.
    TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.
  • 加载中
计量
  • 文章访问数:  405
  • HTML全文浏览量:  11
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-05-07
  • 刊出日期:  2015-09-30

目录

    /

    返回文章
    返回