留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展

王森 陈艳艳 卫智虹 秦张峰 李俊汾 董梅 樊卫斌 王建国

王森, 陈艳艳, 卫智虹, 秦张峰, 李俊汾, 董梅, 樊卫斌, 王建国. 分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展[J]. 燃料化学学报(中英文), 2015, 43(10): 1202-1214.
引用本文: 王森, 陈艳艳, 卫智虹, 秦张峰, 李俊汾, 董梅, 樊卫斌, 王建国. 分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展[J]. 燃料化学学报(中英文), 2015, 43(10): 1202-1214.
WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1202-1214.
Citation: WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1202-1214.

分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展

基金项目: 国家自然科学基金(21227002,21573270,21273264,21273263),国家重点基础研究发展规划(973计划,2011CB201400)和山西省自然科学基金(2013021007-3,2012011005-2)资助项目
详细信息
    通讯作者:

    秦张峰,Tel:0351-4046092,E-mail:qzhf@sxicc.ac.cn;王建国,E-mail:iccjgw@sxicc.ac.cn.

  • 中图分类号: O643;TQ519

Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)

Funds: The project was supported by the National Natural Science Foundation of China (21227002, 21573270, 21273264, 21273263), National Basic Research Program of China (Program 973, 2011CB201400) and Natural Science Foundation of Shanxi Province of China (2013021007-3, 2012011005-2).
  • 摘要: 甲醇制烯烃(MTO)作为一条由煤、天然气及生物质等含碳资源制备重要化学品的非石油路线,近年来备受人们关注。分子筛作为MTO的催化剂,其催化性能和MTO反应行为与其骨架结构和酸性特征密切相关,而认识这些关系对研发新型高效MTO催化剂和改进反应工艺具有重要意义。为此,研究简述了近年来有关甲醇转化制烯烃过程中分子筛催化活性及反应机理的理论和实验研究进展。重点讨论了不同分子筛在MTO过程中烃池物种、反应路线以及催化动力学方面的差异,分析了分子筛催化剂的骨架结构及酸性对其MTO催化性能的影响。
  • STOCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 3-48.
    ASADULAH M, ITO S, KUNIMORI K, YAMADA M, TOMISHIGE K. Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor[J]. J Catal, 2002, 208(2): 255-259.
    DAHL I M, KOLBOE S. On The reaction-mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett, 1993, 20(3/4): 329-336.
    DAHL I M, KOLBOE S. On the reaction-mechanism for propene formation in the MTO reaction over SAPO-34.1. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J Catal, 1994, 149(2): 458-464.
    DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal, 1996, 161(1): 304-309.
    SONG W G, HAW J F, NICHOLAS J B, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000, 122(43): 10726-10727.
    ARSTAD B, NICHOLAS J B, HAW J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc, 2004, 126(9): 2991-3001.
    MIKKELSEN O, RONNING P O, KOLBOE S. Use of isotopic labeling for mechanistic of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta[J]. Microporous Mesoporous Mater, 2000, 40(1/3): 95-113.
    MOLE T, BETT G, SEDDON D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite-an examination of the role of aromatic-hydrocarbons using carbon-13-labeled and deuterium-labeled feeds[J]. J Catal, 1983, 84(2): 435-445.
    MOLE T, WHITESIDE J A, SEDDON D. Aromatic Co-catalysis of methanol conversion over zeolite catalysis[J]. J Catal, 1983, 82(2): 261-266.
    SULLIVAN R F, SIEG R P, LANGLOIS G E, EGAN C J. A new reaction that occurs in hydrocracking of certain aromatic hydrocarbons[J]. J Am Chem Soc, 1961, 83(5): 1156-1160.
    XU T, HAW J F. Cyclopentenyl carbenium ion formation in acidic zeolite-An In-Situ NMR-study of cyclic precursors[J]. J Am Chem Soc, 1994, 116(17): 7753-7759.
    SASSI A, WILDMAN M A, AHN H J, PPASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B, 2002, 106(9): 2294-2303.
    WANG C M, WANG Y D, LIU H X, XIE Z K, LIU Z P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst[J]. Microporous Mesoporous Mater, 2012, 158(1): 264-271.
    DESSAU R M. On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins[J]. J Catal, 1986, 99(1): 111-116.
    SVELLE S, OLSBYE U, JOENSEN F, BJORGEN M. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.
    WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species[J]? J Catal, 2013, 301: 8-19.
    HEMELSOET K, VAN DER MYNSBRUGGE J, DE WISPELAERE K, WAROQUIER M, VAN SPEYBROECK V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545.
    OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24): 5810-5831.
    LI L P, CUI X J, LI J F, WANG J G. Synthesis of SAPO-34/ZSM-5 composite and its catalytic performance in the conversion of methanol to hydrocarbons[J]. J Braz Chem Soc, 2015, 26(2): 290-296.
    NIU X J, GAO J, MIAO Q, DONG M, G.F. WANG G F, FAN W B,QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197: 252-261.
    耿蕊, 董梅, 王浩, 牛宪军, 樊卫斌, 王建国, 秦张峰. 十元环分子筛在甲醇芳构化反应中催化性能的研究[J]. 燃料化学学报, 2014, 42(9): 1119-1127. (GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. J Fuel Chem Technol, 2014, 42(9): 1119-1127.)
    苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5分子筛的制备及其在甲醇芳构化反应中的催化性能[J], 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012, 40(10): 1230-1239.)
    LI J F, WEI Z H, CHEN Y Y, JING B Q, HE Y, DONG M, JIAO H J, LI X K, QIN Z F, WANG J G, FAN W B. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. J Catal, 2014, 317: 277-283.
    卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报, 2013, 41(8): 897-910. (WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. J Fuel Chem Technol, 2013, 41(8): 897-910.)
    许烽, 董梅, 苟蔚勇, 黄立志, 李俊汾, 樊卫斌, 秦张峰, 王建国. ZSM-5分子筛的粒径可控合成及其在甲醇转化中的催化作用[J]. 燃料化学学报, 2012, 40(5): 576-582. (XU Feng, DONG Mei, GOU Wei-yong, HUANG Li-zhi, LI Jun-fen, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. Size-controllable synthesis of ZSM-5 molecular sieves and their catalytic performance in the conversion of methanol to hydrocarbons[J]. J Fuel Chem Technol, 2012, 40(5): 576-582.)
    BJORGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, ALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.
    SVELLE S, JOENSEN F, NERLOV J, LILLERUD K P, KOLBOE S, BJORGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.
    LESHAEGHE D, DE STERCK B, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew Chem Int Ed, 2007, 46(8): 1311-1314.
    BJORGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C] benzene and [13C] methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.
    LI J Z, WEI Y X, CHEN J R, TIAN P, XU S T, QI Y,WANG Q Y, ZHOU Y, HE Y L, LIU Z M. Observation of heptamethylbenzenium cation over SAPO-Type molecular sieve DNL-6 under real mto conversion conditions[J]. J Am Chem Soc, 2012, 134(2): 836-839.
    BJORGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142: 90-97.
    LESHAEGHE D, VAN DER MYNSBRUGGE J, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V. Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem, 2011, 3(1): 208-212.
    TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Microporous Mesoporous Mater, 2010, 136(1/3): 33-41.
    LI J Z, WEI Y X, LIU G Y, QI Y, TIAN P, LI B, HE Y L, LIU Z M. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology[J]. Catal Today, 2011, 171(1): 221-228.
    LI J Z, WEI Y X, CHEN J R, TIAN P, XU S T, YANG X F, LI B, WANG J B, LIU Z. M. Cavity controls the selectivity: Insights of confinement effects on MTO reaction [J]. ACS Catal, 2015, 5(2): 661-665.
    WANG C M, WANG Y D, LIU H X, XIE Z K, LIU Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations: A complete cycle of side chain hydrocarbon pool mechanism[J]. J Phys Chem C, 2009, 113(11): 4584-4591.
    WANG S, CHEN Y Y, WEI Z H, QIN Z F, CHEN J L, MA H, DONG M, LI, J F, FAN W B, WANG J G. Theoretical insights into the mechanism of olen elimination in the methanol-to-olen process over HZSM-5, HMOR, HBEA, and HMCM-22 zeolites[J]. J Phys Chem A, 2014, 118(39): 8901-8910.
    SHANG Y, YANG P P, JIA M J, ZHANG W X, WU T H. Modification of MCM-22 zeolites with silylation agents: Acid properties and catalytic performance for the skeletal isomerization of n-butene[J]. Catal Commun, 2008, 9(5): 907-912.
    WU P, KOMATSU T, YASHIMA T. Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts[J]. Microporous Mesoporous Mater, 1998, 22(1/3): 343-356.
    ZHU Z R, CHEN Q L, ZHU W, KONG D J, LI C. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol[J]. Catal Today, 2004, 93(1): 321-325.
    MERIAUDEAU P, TUAN V A, NGHIEM V T, LEFEVBRE F, HA V T. Characterization and catalytic properties of hydrothermally dealuminated MCM-22[J]. J Catal, 1999, 185(2): 378-385.
    MIN H K, PARK M B, HONG S B. Methanol-to-ole?n conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal, 2010, 271(2): 186-194.
    WANG P F, HUANG L Z, LI J F, DONG M, WANG J G, TATSUMI T, FAN W B. Catalytic properties and deactivation behavior of H-MCM-22 in the conversion of methanol to hydrocarbons[J]. RSC Adv, 2015, 5(36): 28794-28802.
    LI Y, GUO W P, FAN W B, YUAN S P, J LI J F, WANG J G, JIAO H J, TATSUMI T. A DFT study on the distributions of Al and Brönsted acid sites in zeolite MCM-22[J]. J Mol Catal A: Chem, 2011, 338(1/2): 24-32.
    WANG S, WEI Z H, CHEN Y Y, QIN Z F, MA H, DONG M, FAN W B, WANG J G. Methanol to ole?ns over H-MCM-22 zeolite: Theoretical study on the catalytic roles of various pores[J]. ACS Catal, 2015, 5(2): 1131-1144.
    VAN DER MYNSBRUGGE J, DE RIDDER J, HEMELSOET K, WAROQUIER M, VAN SPEYBROECK V. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions[J]. Chem Eur J, 2013, 19(35): 11568-11576.
    VAN DER MYNSBRUGGE J, VISUR M, OLSBYE U BEATO P, BJORGEN M, VAN SPEYBROECK V, SVELLE S. Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts[J]. J Catal, 2010, 292: 201-212.
    LI X, SUN Q M, WANG N, LU J R, YU J H. Confinement effect of zeolite cavities on methanol-to-ole?n conversion: A density functional theory study[J]. J Phys Chem, C, 2014, 118(43): 24935-24940.
    LIU H, PENG L M, XUE N H, GUO X F, DING W P YANG W M, XIE Z K. The effects of carbonaceous species in HZSM-5 on methanol-to-olefin process[J]. Appl Catal A, 2012, 421: 108-113.
    CHEN J R, LI J. Z, YUAN C Y, XU S T, WEI Y X, WANG Q, Y, ZHOU Y, WANG J B, ZHANG M Z, HE Y L, XU S L, LIU Z. M. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catal Sci Technol, 2014, 4(9): 3268-3277.
    SCHULZ H. "Coking" of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes[J]. Catal Today, 2010, 154(3/4): 183-194.
    PALUMBO L, BONINO F, BEATO P, BJORGEN M, ZECCHINA A, BORDIGA S. Conversion of methanol to hydrocarbons: Spectroscopic characterization of carbonaceous species formed over H-ZSM-5[J]. J Phys Chem C, 2008, 112(26): 9710-9716.
    LEE K Y, KANG M Y, IHM S K. Deactivation by coke deposition on the HZSM-5 catalysts in the methanol-to-hydrocarbon conversion[J]. J Phys Chem Sol, 2012, 73(12): 1542-1545.
    ERICHSEN M W, SEVLLE S, OLSBYE U. H-SAPO-5 as methanol-to-olens (MTO) model catalyst: Towards elucidating the effects of acid strength[J]. J Catal, 2013, 298: 94-101.
    ERICHSEN M W, SEVLLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal Today, 2013, 215: 216-223.
    ZHENG A M, LIU S B, DENG F. Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: Insights from theoretical calculations[J]. Microporous Mesoporous Mater, 2009, 121(1/3): 158-165.
    CHU Y Y, HAN B, FANG H J, ZHENG A M, DENG F. Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study[J]. Microporous Mesoporous Mater, 2012, 151: 241-249.
    WANG C M, BROGARRD R Y, WECKHUYSEN B M, NORSKOV J K, STUDT F. Reactivity descriptor in solid acid catalysis: Predicting turnover frequencies for propene methylation in zeotypes[J]. J Phys Chem Lett, 2014, 5(9): 1516-1521.
    MOSES P G, NORSKOV J K. Methanol to dimethyl ether over ZSM-22: A periodic density functional theory study[J]. ACS Catal, 2013, 3(4): 735-745.
    SASTRE S, FORNES V, CORMA A. On the Preferential location of Al and proton siting in zeolites: A computational and infrared study[J]. J Phys Chem B, 2002, 106(3): 701-708.
    SKLENAK S, DEDECEK J, LI C B, WICHTERLOVA B, GABOVA V, SIERKA M, SAUER J. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew Chem Int Ed, 2007, 46(38): 7286-7289.
    DEDECEK J, BALGOVA V, PASHIKOVA V, KLEIN P, WICHTERLOVA B. Synthesis of ZSM-5 Zeolites with defined distribution of al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J]. Chem Mater, 2012, 24(16): 3231-3239.
    VJUNOV A, FULTON J L, HUTHWELKER T, PIN S, MEI D H, SCHENTER G K, GOVIND N, CAMAIONI D M, HU J Z, LERCHER J A. Quantitatively probing the Al distribution in zeolites [J]. J Am Chem Soc, 2014, 136(23): 8296-8306.
    INAGAKI S, SHINODA S, KANEKO Y, TAKECHI K, KOMATSU R, YSUBOI Y, YAMAZAKI H, KONDO J N, KUBOTA Y. Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catal, 2013, 3(1): 74-78.
    WEI F F, CUI Z M, MENG X J, CAO C Y, XIAO F S, SONG W G. Origin of the low olefin production over HZSM-22 and HZSM-23 zeolites: External acid sites and pore mouth catalysis[J]. ACS Catal, 2014, 4(2): 529-534.
    JANDA A, BELL A T. Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI[J]. J Am Chem Soc, 2013, 135(51): 19193-19207.
    PASHIKOVA V, KLEIN P, DEDECEK J, TOKAROVA V, WICHTERLOVA B. Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework [J]. Microporous Mesoporous Mater, 2015, 202: 138-146.
  • 加载中
计量
  • 文章访问数:  583
  • HTML全文浏览量:  44
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-10
  • 修回日期:  2015-09-04
  • 刊出日期:  2015-10-31

目录

    /

    返回文章
    返回