留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究

杨权 刘应书 李子宜 杨雄 王占营 姜理俊

杨权, 刘应书, 李子宜, 杨雄, 王占营, 姜理俊. 萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究[J]. 燃料化学学报(中英文), 2015, 43(12): 1482-1488.
引用本文: 杨权, 刘应书, 李子宜, 杨雄, 王占营, 姜理俊. 萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究[J]. 燃料化学学报(中英文), 2015, 43(12): 1482-1488.
YANG Quan, LIU Ying-shu, LI Zi-yi, YANG Xiong, WANG Zhan-ying, JIANG Li-jun. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1482-1488.
Citation: YANG Quan, LIU Ying-shu, LI Zi-yi, YANG Xiong, WANG Zhan-ying, JIANG Li-jun. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1482-1488.

萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究

基金项目: 国家自然科学基金(51478038)资助项目
详细信息
    通讯作者:

    杨雄,Tel:010-62332751,E-mail:ustbyangx@163.com

  • 中图分类号: X511

Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves

Funds: The project was supported by the National Natural Science Foundation of China (51478038).
  • 摘要: 对低浓度气相萘在两种常见介孔分子筛MCM-41和SBA-15上的吸附特性进行研究。得到了萘在两种吸附剂上的吸附等温线和不同初始浓度下的穿透曲线,并分别与吸附等温线模型(Langmuir、Freundlich、D-R)和恒定浓度波动力学模型进行了拟合。结果表明, Langmuir模型能很好描述低浓度气相萘的吸附等温线(R2均在99%以上);具有微孔结构的SBA-15对萘的吸附能力要优于仅具备介孔结构的MCM-41。动力学模型在初始浓度较低时能较好地预测萘在吸附剂上的穿透曲线,且在SBA-15上的相关系数高于MCM-41;萘在2.76 mol/L时具有较大介孔的SBA-15的总传质系数Ka更高,表明萘在SBA-15上的总传质阻力更低,更能较快达到传质平衡。
  • 朱利中,松下秀鹤.空气中多环芳烃的研究现状[J].环境科学进展, 1997, 5(5):18-29. (ZHU Li-zhong, MATSUSHITA H.Research actuality on polycyclic aromatic hydrocarbons in the environment air[J]. Prog Environ Sci, 1997, 5(5):18-29.)
    MASTRAL A M, CALLÉN M, MURILLO R. Assessment of PAH emissions as a function of coal combustion variables[J]. Fuel, 1996, 75(13):1533-1536.
    尤孝方,李晓东,陆胜勇,倪明江,严建华,岑可法.垃圾与煤混烧PAHs排放特性研究[J].燃料化学学报, 2002, 30(2):130-135. (YOU Xiao-fang, LI Xiao-dong, LU Shen-yong, NI Ming-jiang, YAN Jian-hua, CENG Ke-fa. PAHs emission from Co-combustion of MSW and coal[J].J Fuel Chem Technol, 2002, 30(2):130-135.)
    朱利中,王静,杜烨,许青青.汽车尾气中多环芳烃(PAHs)成分谱图研究[J].环境科学, 2003, 24(3):26-29. (ZHU Li-zhong, WANG Jin, DU Hua, XU Qing-qing. Research on PAHs fingerprints of vehicle discharges[J]. Acta Sci Circumst, 2003, 24(3):26-29.)
    朱利中,沈学优,刘勇建.城市居民区空气中多环芳烃污染特征和来源分析[J].环境科学, 2001, 22(1):86-89. (ZHU Li-zhong, SHEN Xue-you, LIU Yong-jian. Research on PAHs fingerprints of vehicle discharges[J]. Acta Sci Circumst, 2001, 22(1):86-89.)
    ADAM G, DUNCAN H. Influence of diesel fuel on seed germination[J]. Environ Pollut, 2002, 120(2):363-370.
    ZHOU H C, ZHONG Z P, JIN B S, HUANG Y J, XIAO R. Experimental study on the removal of PAHs using in-duct activated carbon injection[J]. Chemosphere, 2005, 59(6):861-869.
    马正月,陈皓侃,李文,李保庆.烟气中多环芳烃吸附脱除的研究[J].燃料化学学报, 2004, 32(5):526-530. (MA Zheng-yue, CHEN Hao-kan, LI Wen, LI Bao-qing. Polycyclic aromatic hydrocarbons removal from hot gas by porous sorbent adsorption[J]. J Fuel Chem Technol, 2004, 32(5):526-530.)
    MASTRAL A M, GARCÍA T, CALLÉN M S, NAVARRO M V, GALBÁN J. Assessement of phenanthrene removal from hot gas by porous carbons[J]. Energy Fuels, 2000, 15(1):1-7.
    周宏仓,蔡华侠,薛鸿斌,宋园园,张翠翠,陆建刚.萘在炭质吸附剂上的静态吸附机理[J].环境科学研究, 2010, 23(5):658-662. (ZHOU Hong-cang, CAI Hua-xia, XUE Hong-bing, SONG Yuan-yuan, ZHANG Cui-cui, LU Jian-gang. Static adsorption mechanism of naphthalene on carbonaceous sorbents[J]. Res Environ Sci, 2010, 23(5):658-662.)
    MASTRAL A M, GARCÍA T, MURILLO R, CALLÉN M S, LOPEZ J M, NAVARRO M V. Effects of CO2 on the phenanthrene adsorption capacity of carbonaceous materials[J]. Energy Fuels, 2002, 16(2):510-516.
    ZHAO X S, MA Q, LU G Q. VOC removal:Comparison of MCM-41 with hydrophobic zeolites and activated carbon[J]. Energy Fuels, 1998, 12(6):1051-1054.
    黄海凤,褚翔,卢晗锋,张波,陈银飞.两种介孔分子筛动态吸附VOCs的研究[J].中国环境科学, 2010, 30(4):442-447. (HUANG Hai-feng, CHU Xiang, LU Han-feng, ZHANG Bo, CHEN Yin-fei. Dynamic adsorption of volatile organic compounds on two kinds of mesoporous molecular sieves[J].China Environ Sci, 2010, 30(4):442-447.)
    KRESGE C T, ROTH W J. The discovery of mesoporous molecular sieves from the twenty year perspective[J]. Chem Soc Rev, 2013, 42(9):3663-3670.
    GIBSON L T. Mesosilica materials and organic pollutant adsorption:Part A removal from air[J]. Chem Soc Rev, 2014, 43(15):5163-5172.
    KOSUGE K, KUBO S, KIKUKAWA N, MAKOTO T. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance[J]. Langmuir, 2007, 23(6):3095-3102.
    WU T M, WU G R, KAO H M, WANG J L. Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds[J]. J Chromatogr, 2006, 1105(1):168-175.
    AHMAD R, WONGFOY A G, MATZGER A J. Microporous coordination polymers as selective sorbents for liquid chromatography[J]. Langmuir, 2009, 25(20):11977-11979.
    MURILLO R, GARCÍA T, AYLÓN E, NAVARRO M V, LÓPEZ J M, MASTRAL A M. Adsorption of phenanthrene on activated carbons:Breakthrough curve modeling[J]. Carbon, 2004, 42(10):2009-2017.
    PAN B C, MENG F W, CHEN X Q, PAN B J, LI X T, ZHANG M W, ZHANG X, CHEN J L, ZHANG Q X,. Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent[J]. J Hazard Mater, 2005, 124(1):74-80.
  • 加载中
计量
  • 文章访问数:  325
  • HTML全文浏览量:  23
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-04
  • 修回日期:  2015-08-01
  • 刊出日期:  2015-12-30

目录

    /

    返回文章
    返回