留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响

覃发玠 刘雅杰 庆绍军 侯晓宁 高志贤

覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤. 甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J]. 燃料化学学报(中英文), 2017, 45(12): 1481-1488.
引用本文: 覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤. 甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J]. 燃料化学学报(中英文), 2017, 45(12): 1481-1488.
QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1481-1488.
Citation: QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1481-1488.

甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响

基金项目: 

国家自然科学基金 21503254

国家自然科学基金 21673270

详细信息
  • 中图分类号: O643.32+2

Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources

Funds: 

the National Natural Science Foundation of China 21503254

the National Natural Science Foundation of China 21673270

More Information
  • 摘要: 以拟薄水铝石为铝源,氢氧化铜、乙酸铜和硝酸铜等为铜源,采用固相法合成Cu-Al尖晶石催化剂。采用TG-MS、XRD、H2-TPR、BET和XANES等表征技术,对合成过程、产物的物相、还原性质及表层结构进行研究,并考察了甲醇重整制氢的缓释催化性能。结果表明,三种铜源都得到尖晶石固溶体,其晶粒粒径相差不大,但其比表面积(25.4-65.9 m2/g)、孔容(0.213-0.434 cm3/g)、表面结构(Cu的分布)以及还原性能有明显的差别,从而导致不同的缓释催化行为。在甲醇重整反应过程中,铜铝缓释催化剂通过反应条件下还原释放活性铜物种而起催化作用。以氢氧化铜合成的催化剂活性高,反应稳定性好,反应后生成的Cu粒子最小(6.6 nm),其表现出优异的催化性能。
  • 图  1  前驱体的TG-MS谱图

    Figure  1  Thermogravimetric mass spectrometry (TG-MS) profiles of the precursors

    图  2  新鲜催化剂的XRD谱图

    Figure  2  XRD patterns of the fresh catalysts

    图  3  新鲜催化剂的Cu L3-edge XANES谱图

    Figure  3  Cu L3-edge XANES spectra of fresh catalysts

    图  4  新鲜催化剂的BJH孔径分布

    Figure  4  BJH pore size distributions of fresh catalysts

    图  5  不同铜源制备的铜铝尖晶石催化剂的H2-TPR谱图

    Figure  5  H2-TPR patterns of the Cu-Al spinel catalysts from different Cu sources

    图  6  催化剂的还原度随反应温度的变化

    Figure  6  Reduction degree of catalysts with the change of reduction temperature

    图  7  不同催化剂上甲醇转化率随反应时间的变化

    Figure  7  Change of methanol conversion vs time for three different catalyst

    图  8  反应后催化剂的XRD谱图

    Figure  8  XRD patterns of tested catalysts

    a: CuHAl-950-t; b: CuAAl-950-t; c: CuNAl-950-t

    表  1  催化剂的特征参数

    Table  1  Characteristic parameter of fresh and tested catalysts

    Fresh catalyst CuHAl-950 CuAAl-950 CuNAl-950
    Cu source Cu(OH)2 Cu(CH3COO)2·H2O Cu(NO3)2·3H2O
    dspinel/ nm[a] 12.7 12.4 11.3
    BET surface area A/ (m2·g-1) 65.9 33.8 25.4
    Pore volume v/(cm3·g-1) 0.434 0.213 0.289
    X spinel / %[b] 81.3 79.1 93.7
    x in Cu1-3xVxAl2+2xO4 0.129 0.134 0.104
    After MSR CuHAl-950-t CuAAl-950-t CuNAl-950-t
    dCu-after MSR / nm[c] 6.6 9.2 20.2
    Cu0 surface area A/(m2 ·g-1)[d] 183.9 146.1 94.7
    RD/%[e] 88.7 85.9 66.8
    [a]: the crystallite size of spinel was calculated by the Scherrer equation with the XRD patterns (Figure 2);
    [b]: the molar ratio of Cu in the Cu-Al spinel phase to total Cu as derived from H2-TPR (Figure 5);
    [c]: Cu crystalline size of tested catalyst was calculated by the Scherrer equation with XRD patterns (Figure 8);
    [d]: Cu surface area of tested catalyst was measured by N2O chemisorption method;
    [e]: the releasing degree (RD) of Cu from spinel after catalytic testing was calculated by using H2-TPR data of tested samples
    下载: 导出CSV
  • [1] 李晓峰, 王晶, 张磊, 雷燕秋, 刘攀, 陈然, 陈何臻, 何素芳, 罗永明.铈和镨改性Ni/Al2O3催化剂对甲醇水蒸气重整制氢的影响[J].中国稀土学报, 2016, 34(4):403-410. http://www.cqvip.com/QK/90301X/201604/669800762.html

    LI Xiao-feng, WANG Jing, ZHANG Lei, LEI Yan-qiu, LIU Pan, CHEN Ran, CHEN Ke-zheng, HE Su-fang, LUO Yong-ming. Effect of cerium and praseodymium addition on Ni/Al2O3 catalyst to produce H2 from methanaol steam reforming[J]. J Chin Soc Rare Earths, 2016, 34(4):403-410. http://www.cqvip.com/QK/90301X/201604/669800762.html
    [2] 吝子东, 白松, 张晓辉.水电解制氢技术发展前景[J].舰船防化, 2014, (2):48-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jcfh201402014&dbname=CJFD&dbcode=CJFQ

    LIN Zi-dong, BAI Song, ZHANG Xiao-hui. Dexelopment prospect of water electrolysis hydrogen production technology[J]. Chem Defe Ships, 2014, (2):48-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jcfh201402014&dbname=CJFD&dbcode=CJFQ
    [3] WANG X, GORTE R J. A study of steam reforming of hydrocarbon fuels on Pd/ceria[J]. Appl Catal A:Gen, 2002, 224(1):209-218. http://www.sciencedirect.com/science/article/pii/S0926860X01007839
    [4] ILINICH O, RUETTINGER W, LIU X, FARRAUTO R. Cu-Al2O3-CuAl2O4 water-gas shift catalyst for hydrogen production in fuel cell applications:Mechanism of deactivation under start-stop operating conditions[J]. J Catal, 2007, 247(1):112-118. doi: 10.1016/j.jcat.2007.01.014
    [5] RARÓG-PILECKA W, SZMIGIEL D, KOWALCZYK Z, JODZIS S, ZIELINSKI J. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium[J]. J Catal, 2003, 218(2):465-469. doi: 10.1016/S0021-9517(03)00058-7
    [6] 王桂芝.甲醇制氢技术及在燃料电池中的应用[J].化学工业, 2008, 26(1):17-22. http://www.cqvip.com/Main/Detail.aspx?id=26526497

    WANG Gui-zhi. Technology for production hydrogen from methanol and its application in fuel cell system[J]. Chem Ind, 2008, 26(1):17-22. http://www.cqvip.com/Main/Detail.aspx?id=26526497
    [7] SÁ S, SILVA H, BRANDÃO L, SOUSA J, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010, 99(1/2):43-54. http://www.sciencedirect.com/science/article/pii/S0926337310002584
    [8] MATSUMURA T, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000, 152(1/2):157-165. http://www.sciencedirect.com/science/article/pii/S1381116999002824
    [9] SHEN G, FUJITA S, MATSUMOTO S, TAKEZAWA N. Steam reforming of methanol on binary Cu/ZnO catalysts:Effects of preparation condition upon precursors, surface structure and catalytic activity[J]. J Mol Catal A:Chem, 1997, 124(2):123-136. http://www.sciencedirect.com/science/article/pii/S1381116997000782
    [10] VELU S, SUZUKI K, OSAKI T. Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides[J]. Catal lett, 1999, 62(2/4):159-167. doi: 10.1023/A:1019023811688
    [11] VELU S, SUZUKI K. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts:effect of substitution of zirconium and cerium on the catalytic performance[J]. Top Catal, 2003, 22(3/4):235-244. doi: 10.1023/A:1023576020120
    [12] 毛丽萍, 吕功煊.纳米Cu/Al2O3催化剂催化甲醇水蒸气重整制氢研究[J].甘肃科学学报, 2009, 21(1):77-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gskx200901025&dbname=CJFD&dbcode=CJFQ

    MAO Li-ping, LV Gong-xuan. Hydrogen production from methanol steam reforming over nano-Cu/A12O3 catalyst[J]. J Gansu Sci, 2009, 21(1):77-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gskx200901025&dbname=CJFD&dbcode=CJFQ
    [13] PURNAMA H, GIRGSDIES F, RESSLER T, SCHATTKA J H, CARUSO R A, SCHOMÄCKER R, SCHLÖGL R. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol[J]. Catal Lett, 2004, 94(1/2):61-68. doi: 10.1023/B:CATL.0000019332.80287.6b
    [14] SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKAKI K, TAKEHIRA K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepare by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A:Gen, 2004, 263(2):249-253. doi: 10.1016/j.apcata.2003.12.018
    [15] OGUCHI H, NISHIGUCHI T, MATSUMOTO T, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts[J]. Appl Catal A:Gen, 2005, 281(1):69-73. http://www.sciencedirect.com/science/article/pii/S0926860X04009184
    [16] KAMEOKA S, TANABE T, TSAI A P. Spinel CuFe2O4:A precursor for copper catalyst with high thermal stability and activity[J]. Catal Lett, 2005, 100(1/2):89-93. doi: 10.1007/s10562-004-3091-z
    [17] MAITI S, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, PRIOLKAR K, AQUILANTI G, GAYEN A. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4):A superior catalyst for methanol steam reforming compared to its impregnated analogue[J]. J Power Sources, 2016, 304:319-331. doi: 10.1016/j.jpowsour.2015.11.066
    [18] YONG S, OOI C, CHAI S, WU X. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. Int J Hydrogen Energy, 2013, 38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023
    [19] MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, 5(5):761-764. https://www.researchgate.net/publication/244723471_Copper-Alumina_Spinel_Catalysts_for_Steam_Reforming_of_Methanol
    [20] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14):1800-1803. doi: 10.1016/j.catcom.2009.06.001
    [21] PUSSANA H, KAJORNSAK F. Cu-Cr, Cu-Mn, and Cu-Fe spinel-oxide-type catalysts for reforming of oxygenated hydrocarbons[J]. J Phys Chem C, 2013, 117(45):23757-23765. doi: 10.1021/jp407717c
    [22] 李光俊, 郗宏娟, 张素红, 谷传涛, 庆绍军, 侯晓宁, 高志贤.尖晶石CuM2O4(M=Al、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009

    LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4 (M=Al, Fe, Cr) for the steam reforming of methanol[J]. J Fuel Chem Technol, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009
    [23] HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Cera Inter, 2014, 40(3):4541-4551. doi: 10.1016/j.ceramint.2013.08.130
    [24] 郗宏娟, 李光俊, 庆绍军, 侯晓宁, 赵金珍, 刘雅杰, 高志贤.固相法合成铜铝尖晶石催化甲醇重整反应[J].燃料化学学报, 2013, 41(8):998-1002. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18242.shtml

    XI Hong-juan, LI Guang-jun, QING Shao-jun, HOU Xiao-ning, ZHAO Jin-zhen, LIU Ya-jie, GAO Zhi-xian. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. J Fuel Chem Technol, 2013, 41(8):998-1002. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18242.shtml
    [25] XI H, HOU X, LIU Y, QING S, GAO Z. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [26] GRIONI M, GOEDKOOP J B, SCHOORL R, GROOT F M F, FUGGLR J C, SCHÄFERS F, KOCH E E, ROSSI G, ESTEVA J M, KARNATAK R C. Studies of copper valence states with Cu L3 X-ray-absorption spectroscopy[J]. Phys Rev B, 1989, 39(3):1541-1545. doi: 10.1103/PhysRevB.39.1541
    [27] SHIMIZU K, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of catalysts for selective Cu-Al2O3 catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000, 2(10):2435-2439. doi: 10.1039/b000943l
    [28] LUO M F, FANG P F, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A:Chem, 2005, 239(1/2):243-248. http://www.sciencedirect.com/science/article/pii/S1381116905004164
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  136
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-17
  • 修回日期:  2017-09-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回