留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加拿大油砂沥青减压渣油在CO/H2-H2O作用下的热改质特性研究

刘贺 王宗贤 赵翔鵾 李玉星 陈坤 郭爱军

刘贺, 王宗贤, 赵翔鵾, 李玉星, 陈坤, 郭爱军. 加拿大油砂沥青减压渣油在CO/H2-H2O作用下的热改质特性研究[J]. 燃料化学学报(中英文), 2018, 46(1): 45-53.
引用本文: 刘贺, 王宗贤, 赵翔鵾, 李玉星, 陈坤, 郭爱军. 加拿大油砂沥青减压渣油在CO/H2-H2O作用下的热改质特性研究[J]. 燃料化学学报(中英文), 2018, 46(1): 45-53.
LIU He, WANG Zong-xian, ZHAO Xiang-kun, LI Yu-xing, CHEN Kun, GUO Ai-jun. Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H2-H2O[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 45-53.
Citation: LIU He, WANG Zong-xian, ZHAO Xiang-kun, LI Yu-xing, CHEN Kun, GUO Ai-jun. Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H2-H2O[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 45-53.

加拿大油砂沥青减压渣油在CO/H2-H2O作用下的热改质特性研究

基金项目: 

国家自然科学基金 21776313

中国博士后科学基金资助项目 2016M602219

山东省自然科学基金博士基金 ZR2017BB021

青岛市博士后应用研究项目 2016224

重质油国家重点实验室资助项目 SLKZZ-2017003

重质油国家重点实验室资助项目 SLKZZ-2017011

山东省重点研发发展计划 2017GGX70108

中央高校基本科研业务费专项资金 Special Projects, 17CX05016

中国石油科技创新基金 2017D-5007-0506

中国石油天然气股份有限公司攻关项目 CNPC, PRIKY16066

山东省博士后创新项目专项资金 201702028

详细信息
  • 中图分类号: TE624

Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H2-H2O

Funds: 

National Natural Science Foundation of China 21776313

the China Postdoctoral Science Foundation 2016M602219

Provincial Natural Science Foundation of Shandong ZR2017BB021

Qingdao Postdoctoral Applied Research Project 2016224

State Key Laboratory of Heavy Oil Processing SLKZZ-2017003

State Key Laboratory of Heavy Oil Processing SLKZZ-2017011

Key Research and Development Plan of Shandong Province 2017GGX70108

Fundamental Research Funds for the Central Universities Special Projects, 17CX05016

PetroChina Innovation Foundation 2017D-5007-0506

China National Petroleum Corporation CNPC, PRIKY16066

Shandong Postdoctoral Funded Project 201702028

More Information
    Corresponding author: WANG Zong-xian, Tel: 0532-86981851, E-mail: zxwang@upc.edu.cn
  • 摘要: 以加拿大油砂沥青大于420℃的减压渣油(BVR)为原料,对比研究其在CO/H2-H2O和N2体系中的热改质特性,通过系统分析BVR在H2-H2O、CO-H2O、N2-H2O等不同氢源下的热改质特性以揭示CO/H2-H2O对渣油热改质的作用机制,最后探讨合成气压力、含水量以及温度对BVR临CO/H2-H2O改质生焦倾向的影响。结果表明,与临氮改质相比,相同反应条件下,合成气和水可使BVR热改质的生焦诱导期延长3.5-6.5 min;相同生焦率(约0.1%)时,合成气和水可显著提升BVR热改质降黏率,410℃时相对临氮改质的降黏率为29.1%,而420℃时可达54.6%。比较不同氢源下BVR热改质的生焦诱导期、改质油黏度和安定性、渣油转化率发现,H2-H2O、CO-H2O、N2-H2O等均对BVR热改质表现出与CO/H2-H2O相同的促进效果,各氢源作用活性的大小顺序为H2-H2O > CO/H2-H2O > CO-H2O > N2-H2O。由此可知,CO/H2-H2O对渣油热改质的促进作用可归因于氢气、CO水热变换新生氢和水热裂解的综合效应,且其中氢气的作用仍最显著。合成气压力、含水量和反应温度可通过影响不同氢源的贡献而调控BVR临CO/H2-H2O改质生焦倾向。低成本易获取的合成气可以提供BVR热降黏改质所需氢源,水能够通过CO水热变换反应供出新生活泼氢而协同合成气实现BVR高效改质。
  • 图  1  不同温度下BVR临CO/H2-H2O和临N2热改质过程的生焦趋势线

    Figure  1  Coke yield curves during BVR upgrading process at different temperatures

    (a): with CO/H2-H2O; (b): with N2

    图  2  BVR临CO/H2-H2O和临N2热改质油的性质随反应时间的变化

    Figure  2  Properties of products from BVR upgrading process with CO/H2-H2O and N2 versus reaction time

    (a): υ50; (b): oAPI; (c): spot test rank

    图  3  不同氢源作用下BVR热改质的生焦趋势线

    Figure  3  Coke yield curves during BVR upgrading process with different hydrogen sources

    (a): 410 ℃; (b): 420 ℃

    图  4  不同氢源作用下BVR改质油的黏度和安定性等级随反应时间的变化

    Figure  4  Properties of products from BVR upgrading process with different hydrogen sources versus reaction time

    (a): υ50; (b): spot test rank

    图  5  CO/H2-H2O对BVR热改质的可能作用分析

    Figure  5  Possible influences of CO/H2-H2O on BVR upgrading

    图  6  BVR临CO/H2-H2O改质生焦量随压力和含水量的变化

    Figure  6  Coke yield as a function of pressure and water content during BVR upgrading with CO/H2-H2O

    (a): pressure; (b): water content

    表  1  油砂沥青掺稀原油及减压渣油的基本性质

    Table  1  Main properties of BCO and BVR

    Sample BCO BVR
    ρ420/(g·cm-3) 1.0078 1.0397
    oAPI 8.4 4.2
    υ80/(mm2·s-1) 814 45241
    υ100/(mm2·s-1) 256 7878
    wCCR/% 15.06 19.03
    MW(VPO) 483 875
    wS/% 5.44 6.27
    wC/% 83.45 83
    wH/% 10.42 10.02
    wN/% 0.44 0.59
    H/C (atomic ratio) 1.49 1.44
    wNi/(μg·g-1) 38.8 62.5
    wV/(μg·g-1) 133.5 230.1
    下载: 导出CSV

    表  2  相同生焦率条件下BVR改质油基本性质对比

    Table  2  Main properties of products from BVR upgrading process with CO/H2-H2O and N2 at coke induction period

    Thermal condition 410 ℃ 420 ℃
    N2 CO/H2-H2O N2 CO/H2-H2O
    Coke induction period t/min 13 16.5 6.5 10.5
    υ50/(mm2·s-1) 650 461 718 326
    Relative viscosity reduction rate ηr/% - 29.1 - 54.6
    oAPI 9.7 9.9 9.4 10.2
    Spot test rank 1 1 1 1
    Conversion of OSVR /% 31.77 33.41 29.82 34.26
    note:${\eta _r} = \left| {\frac{{{v_{50}}({\rm{CO}}/{{\rm{H}}_2} - {{\rm{H}}_2}{\rm{O}}) - {v_{50}}({{\rm{N}}_2})}}{{{v_{50}}({{\rm{N}}_2})}}} \right| \times 100\% $
    下载: 导出CSV

    表  3  不同氢源作用下BVR改质过程在生焦诱导期时的渣油转化率

    Table  3  Conversion of BVR during upgrading process with different hydrogen sources at coke induction period

    Hydrogen sources Temperature t/ ℃ Coke induction period t/min Conversion of OSVR x/%
    N2-H2O 410 14 31.73
    420 7.5 30.37
    CO-H2O 410 15 32.58
    420 9 31.97
    CO/H2-H2O 410 16.5 33.41
    420 10.5 34.26
    H2-H2O 410 18 34.13
    420 12.5 35.86
    下载: 导出CSV
  • [1] 李振宇, 乔明, 任文坡.委内瑞拉超重原油和加拿大油砂沥青加工利用现状[J].石油学报(石油加工), 2012, 28(3):517-524. http://www.doc88.com/p-5408063729438.html

    LI Zhen-yu, QIAO Ming, Ren Wen-po. Current development of venezuela extra heavy crude and canadian oil sands processing[J]. Acta Pet Sin (Pet Process Sect), 2012, 28(3):517-524. http://www.doc88.com/p-5408063729438.html
    [2] 尹佳音, 唐葆君.中国石油进口安全影响因素分析[J].中国能源, 2016, 38(11):29-33. doi: 10.3969/j.issn.1003-2355.2016.11.006

    YIN Jia-yin, TANG Bao-jun. Analysis of influencing factors of China oil security from oil imports[J]. Energy China, 2016, 38(11):29-33. doi: 10.3969/j.issn.1003-2355.2016.11.006
    [3] BORDEN K. The challenges of processing and transporting heavy crude[J]. Oil Gas Facil, 2015, 2(5):22-26. https://www.researchgate.net/publication/274747516_The_Challenges_of_Processing_and_Transporting_Heavy_Crude
    [4] SANTOS R G, LOH W, BANNWART A C, TREVISAN O V. An overview of heavy oil properties and its recovery and transportation methods[J]. Braz J Chem Eng, 2014, 31(3):571-590. doi: 10.1590/0104-6632.20140313s00001853
    [5] 王齐, 王宗贤, 沐宝泉, 郭爱军, 郭凯黎.委内瑞拉常压渣油供氢热转化研究[J].燃料化学学报, 2012, 40(10):1200-1205. doi: 10.3969/j.issn.0253-2409.2012.10.008

    WANG Qi, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, GUO Kai-li. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. J Fuel Chem Technol, 2012, 40(10):1200-1205. doi: 10.3969/j.issn.0253-2409.2012.10.008
    [6] ZHANG N, ZHAO S, SUN X, XU Z, XU C. Storage stability of the visbreaking product from venezuela heavy oil[J]. Energy Fuels, 2010, 24(7):3970-3976. doi: 10.1021/ef100272e
    [7] 王齐, 郭磊, 王宗贤, 沐宝泉, 郭爱军, 刘贺.委内瑞拉减压渣油供氢热转化基础研究[J].燃料化学学报, 2012, 40(11):1317-1322. doi: 10.3969/j.issn.0253-2409.2012.11.006

    WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of venezuelan vacuum residue[J]. J Fuel Chem Technol, 2012, 40(11):1317-1322. doi: 10.3969/j.issn.0253-2409.2012.11.006
    [8] TAKATUKA T, WADA Y, FUKUI Y, KOMATSU S, SHIMIZU S. VisABC process[C]//Heavy Oil and Oil Sands Technical Symposium, Calgary, Canada, 1988.
    [9] 冯婉璐, 吴诗勇, 尤全, 吴幼青, 郑化安, 闵小建.合成气气氛下含水量对锡林浩特煤液化性能的影响[J].华东理工大学学报(自然科学版), 2017, 43(2):156-161. http://www.cqvip.com/QK/90601A/201702

    FENG Wan-lu, WU Shi-yong, YOU Quan, WU You-qing, ZHENG Hua-an, MIN Xiao-jian. Effect of moisture amount on liquefaction of Xinlinhaote coal under syngas[J]. J East China Univ Sci Technol (Nat Sci Ed), 2017, 43(2):156-161. http://www.cqvip.com/QK/90601A/201702
    [10] 熊奇, 乔建超, 韩菊红, 盛清涛, 申峻.非纯氢气氛下煤直接液化的研究[J].煤化工, 2013, 41(5):21-24. http://d.wanfangdata.com.cn/Periodical_mhg201305006.aspx

    XIONG Qi, QIAO Jian-chao, HAN Ju-hong, SHENG Qing-tao, SHEN Jun. Study on direct coal liquefaction in non-pure hydrogen atmosphere[J]. Coal Chem Ind, 2013, 41(5):21-24. http://d.wanfangdata.com.cn/Periodical_mhg201305006.aspx
    [11] 袁明江, 赵锁奇, 闫东菊.合成气氢源下悬浮床加氢反应焦炭及催化剂特性分析[J].石油炼制与化工, 2010, 41(10):52-57. doi: 10.3969/j.issn.1005-2399.2010.10.010

    YUAN Ming-jiang, ZHAO Suo-qi, YAN Dong-ju. An analysis of coke and dispersed catalysts in slurry-bed hydrocracking using syngas as hydrogen source[J]. Pet Process Petrochem, 2010, 41(10):52-57. doi: 10.3969/j.issn.1005-2399.2010.10.010
    [12] 王刚, 李文, 衣悦涛, 薛钦昭, 李保庆.氢气和合成气下生物质高压液化过程的实验研究[J].燃料化学学报, 2008, 36(5):563-569. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17298.shtml

    WANG Gang, LI Wen, YI Yue-tao, XUE Qin-zhao, LI Bao-qing. Experimental study on high-pressure liquefaction of biomass in H2 and syngas[J]. J Fuel Chem Technol, 2008, 36(5):563-569. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17298.shtml
    [13] XU Y, YUAN M, ZHAO S, XU C. Upgrading heavy oil using syngas as the hydrogen source with dispersed catalysts[J]. Pet Sci Technol, 2009, 27(7):712-732. doi: 10.1080/10916460802105641
    [14] YAN D, YUAN M, SUN X, ZHAO S. A Fundamental research for upgrading heavy oil using syngas as hydrogen source[C]//Proceedings of 1st world heavy oil conference, 2006, 930-941.
    [15] HOOK B D, AKGERMAN A. Desulfurization of dibenzothiophene by in-situ hydrogen generation through a water gas shift reaction[J]. Ind Eng Chem Process Des Dev, 1986, 25(25):278-284. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/39_2_SAN%20DIEGO_03-94_0623.pdf
    [16] LIU C, NG F T T. HDS of DBT using in situ generated hydrogen in the presence of dispersed Mo catalysts Ⅱ. Comparison between in situ hydrogen and molecular H2[J]. Chin J Catal, 1999, 20(5):597-59. https://www.sciencedirect.com/science/article/pii/S0920586109002806
    [17] NG F T T, TSAKIRI S K. Activation of water in emulsion for catalytic desulphurization of benzothiophene[J]. Fuel, 1992, 71(11):1309-1314. doi: 10.1016/0016-2361(92)90059-W
    [18] ALGHAMDI A. Hydrodesulphurization of light gas oil using hydrogen from the water gas shift reaction[D]. Waterloo:University of Waterloo, 2009.
    [19] LIU K. Hydrodesulfurization and hydrodenitrogenation of model, compounds using in-situ hydrogen over nano-dispersed, Mo sulfide based catalysts[D]. Waterloo:University of Waterloo, 2010.
    [20] JIA L. Oil sands bitumen emulsion upgrading by using in situ hydrogen generated through the water gas shift reaction[D]. Waterloo:University of Waterloo, 2014.
    [21] CHOY C. Naphthalene hydrogenation with water gas shift in model oil/water emulsion slurry over molybdenum sulfide[D]. Waterloo:University of Waterloo, 2009.
    [22] ARAI K, TADAFUMI ADSCHIRI A, WATANABE M. Hydrogenation of hydrocarbons through partial oxidation in supercritical water[J]. Ind Eng Chem Res, 2000, 39(12):4697-4701. doi: 10.1021/ie000326g
    [23] SATO T, SUMITA T, ITOH N. Effect of CO addition on upgrading bitumen in supercritical water[J]. J Supercrit Fluids, 2015, 104:171-176. doi: 10.1016/j.supflu.2015.06.004
    [24] YUAN P Q, CHENG Z M, JIANG W L, ZHANG R, YUAN W K. Catalytic desulfurization of residual oil through partial oxidation in supercritical water[J]. J Supercrit Fluids, 2005, 35(1):70-75. doi: 10.1016/j.supflu.2004.11.002
    [25] 程健, 刘以红, 罗运华, 刘国祥, 阙国和.孤岛渣油超临界水-合成气中悬浮床加氢裂化反应研究Ⅰ.催化剂的影响[J].燃料化学学报, 2003, 31(6):574-578. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16868.shtml

    CHENG Jian, LIU Yi-hong, LUO Yun-hua, LIU Guo-xiang, QUE Guo-he. Hydrocracking of Gudao residual oil in suspended bed using supercritical water-syngas as hydrogen source Ⅰ. The effect of catalyst on hydrocracking[J]. J Fuel Chem Technol, 2003, 31(6):574-578. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16868.shtml
    [26] 程健, 李晶, 刘以红, 罗运华, 刘国祥, 阙国和.孤岛渣油超临界水-合成气中悬浮床加氢裂化反应研究Ⅱ.不同氢源下的加氢裂化反应[J].燃料化学学报, 2004, 32(2):180-184. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16712.shtml

    CHENG Jian, LI Jing, LIU Yi-hong, LUO Yun-hua, LIU Guo-xiang, QUE Guo-he. Gudao residual oil hydrocracking with dispersed catalysts using supercritical water-syngas as hydrogen source Ⅱ. The comparison of residue hydrocracking using different hydrogen sources[J]. J Fuel Chem Technol, 2004, 32(2):180-184. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16712.shtml
    [27] 张龙力, 张世杰, 杨国华, 蒋云, 阙国和.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工), 2003, 19(2):82-87. http://www.cqvip.com/QK/94167X/200302/7839649.html

    ZHANG Long-li, ZHANG Shi-jie, YANG Guo-hua, JIANG Yun, QUE Guo-he. Colloid stability of atmospheric residual oil during thermal reaction[J]. Acta Pet Sin (Pet Process Sect), 2003, 19(2):82-87. http://www.cqvip.com/QK/94167X/200302/7839649.html
    [28] 张龙力, 杨国华, 阙国和, 杨朝合, 山红红.大港常压渣油临氮与临氢热反应过程中胶体稳定性变化研究[J].燃料化学学报, 2011, 39(9):682-688. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17802.shtml

    ZHANG Long-li, YANG Guo-hua, QUE Guo-he, YANG Chao-he, SHAN Hong-hong. Colloidal stability variation of Dagang atmosphere residue during thermal reaction under nitrogen or hydrogen[J]. J Fuel Chem Technol, 2011, 39(9):682-688. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17802.shtml
    [29] 郭爱军, 薛鹏, 陈建涛, 王宗贤.超稠油掺炼供氢剂的减黏裂化研究[J].炼油技术与工程, 2013, 43(5):28-32. http://www.cqvip.com/QK/92738A/201305/46922254.html

    GUO Ai-jun, XUE Peng, CHEN Jian-tao, WANG Zong-xian. Study on application of hydrogen donor in visbreaking of ultra-heavy oil[J]. Pet Refin Eng, 2013, 43(5):28-32. http://www.cqvip.com/QK/92738A/201305/46922254.html
    [30] MURAZA O, GALADIMA A. Aquathermolysis of heavy oil:A review and perspective on catalyst development[J]. Fuel, 2015, 157:219-231. doi: 10.1016/j.fuel.2015.04.065
    [31] 吴川, 雷光伦, 姚传进, 盖平原, 曹嫣镔, 李啸南.双亲催化剂作用超稠油水热裂解降黏机理研究[J].燃料化学学报, 2010, 38(6):684-690. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17648.shtml

    WU Chuan, LEI Guang-lun, YAO Chuan-jin, GAI Ping-yuan, CAO Yan-bin, LI Xiao-nan. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst[J]. J Fuel Chem Technol, 2010, 38(6):684-690. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17648.shtml
    [32] 樊泽霞, 赵福麟, 王杰祥, 巩永刚.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报, 2006, 34(3):315-318. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17002.shtml

    FAN Ze-xia, ZHAO Fu-lin, WANG Jie-xiang, GONG Yong-gang. Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J]. J Fuel Chem Technol, 2006, 34(3):315-318. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17002.shtml
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  36
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2017-12-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回