留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃性能的研究

李增杰 黄玉辉 朱明 陈晓蓉 梅华

李增杰, 黄玉辉, 朱明, 陈晓蓉, 梅华. Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃性能的研究[J]. 燃料化学学报(中英文), 2018, 46(1): 54-58.
引用本文: 李增杰, 黄玉辉, 朱明, 陈晓蓉, 梅华. Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃性能的研究[J]. 燃料化学学报(中英文), 2018, 46(1): 54-58.
LI Zeng-jie, HUANG Yu-hui, ZHU Ming, CHEN Xiao-rong, MEI Hua. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 54-58.
Citation: LI Zeng-jie, HUANG Yu-hui, ZHU Ming, CHEN Xiao-rong, MEI Hua. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 54-58.

Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃性能的研究

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813)
  • 中图分类号: O643.88

Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran

More Information
  • 摘要: 采用浸渍法制备了不同NiO含量的Ni/Al2O3催化剂,并进行了2-甲基呋喃加氢制2-甲基四氢呋喃性能的考察。结果表明,在制备的NiO负载量为10%、20%、25%、30%和40%的Ni/Al2O3催化剂中,随着NiO负载量增加,加氢反应的选择性与2-甲基呋喃的转化率均呈现出先增加后减小的趋势。其原因是由于适当增加NiO负载量有利于催化剂表面活性中心的形成,有利于加氢反应的进行;但是过度负载的NiO容易堵塞Al2O3载体中的介孔通道,降低反应的转化率与选择性。在釜式反应器中进行反应,对加氢反应条件进行了优化,发现在反应压力为3 MPa、反应温度150℃、机械搅拌速率为1000 r/min时,Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃具有较高的选择性。当NiO负载量为25%时,2-甲基四氢呋喃的选择性最高为97.1%,2-甲基呋喃的转化率达到99.4%。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813)
  • 图  1  2-甲基呋喃加氢制备2-甲基四氢呋喃的步骤

    Figure  1  Step of preparation of 2-methyltetrahydrofuran by hydrogenation of 2-methylfuran

    图  2  Ni/Al2O3催化剂还原后的XRD谱图

    Figure  2  XRD patterns of reduced Ni/Al2O3 catalysts

    NiO loading: a: 10%; b: 20%; c: 25%; d: 30%; e: 40%

    图  3  Ni/Al2O3催化剂的H2-TPR谱图

    Figure  3  H2-TPR patterns of Ni/Al2O3catalysts

    NiO loading: a: 10%; b: 20%; c: 25%; d: 30%; e: 40%

    图  4  25%Ni/Al2O3催化剂催化2-MF加氢制备2-MTHF的稳定性

    Figure  4  Stability test of hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran over 25%Ni/Al2O3

    ●, ■ : first sample; ▲, ▼ : second sample

    表  1  载体的BET数据

    Table  1  BET analysis supports

    Sample A BET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    Activated
    alumina
    313 0.4488 5.73
    γ-Al2O3 243 0.4048 6.64
    activated alumina is used as carrier; γ-Al2O3 was prepared by calcination of activated alumina at 600 ℃
    下载: 导出CSV

    表  2  xNi/Al2O3催化剂的BET数据

    Table  2  BET analysis of calcined xNi/Al2O3 catalysts

    NiO w/% ABET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    10 140 0.3242 8.64
    25 149 0.3225 8.67
    30 152 0.3486 9.17
    40 108 0.2448 9.04
    activated alumina is used as carrier
    下载: 导出CSV

    表  3  不同NiO负载量对催化剂催化性能影响

    Table  3  Effects of different NiO loadings on catalytic performance of catalysts

    NiO w/% 2-MF
    conversion x/%
    Product selectivity s/%
    2-MTHF others
    10 80.2 92.3 7.7
    20 98.9 94.3 5.7
    25 99.6 96.4 3.6
    30 99.3 93.6 6.3
    35 98.4 95.0 5.0
    40 88.9 95.4 4.6
    2-MF: 15 mL; catalyst: 0.5 g; reaction pressure: 4 MPa; reaction temperature: 150 ℃
    下载: 导出CSV

    表  4  反应压力对Ni/Al2O3催化剂催化性能影响

    Table  4  Effect of reaction pressure on catalytic performance of Ni/Al2O3 catalyst

    Pressure
    p/MPa
    2-MF
    conversion x/%
    Product selectivity s/%
    2-MTHF others
    2 99.6 93.4 6.6
    3 99.4 97.1 2.9
    4 99.6 96.4 3.6
    5 99.7 96.1 3.9
    6 99.7 96.2 3.8
    2-MF: 15 mL; catalyst: 0.5 g; reaction temperature: 150 ℃
    下载: 导出CSV

    表  5  反应温度对Ni/Al2O3催化剂催化性能影响

    Table  5  Effect of reaction temperature on catalytic performance of Ni/Al2O3 catalyst

    Reaction
    temperature t/℃
    2-MF
    conversion x/%
    Product selectivity s/%
    2-MTHF others
    90 53.0 39.2 60.8
    120 96.8 95.2 4.8
    140 98.2 95.4 4.6
    150 99.4 97.1 2.9
    180 98.2 58.4 41.6
    2-MF: 15 mL; catalyst: 0.5 g; reaction pressure: 3 MPa
    下载: 导出CSV
  • [1] XIU S, SHAHBAZI A. Bio-oil production and upgrading research:A review[J]. Renewable Sustainable Energy Rev, 2012, 16(7):4406-4414. doi: 10.1016/j.rser.2012.04.028
    [2] ZHENG H, ZHU Y, TENG B, BA Z, ZHANG C, XIANG H, LI Y. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran[J]. J Mol Catal A:Chem, 2006, 246(1):18-23. https://www.sciencedirect.com/science/article/pii/S1381116905007065
    [3] RAGAN J A, ENDE D J, BRENEK S J, EISENBEIS S A, SINGER R A, TICKNER D L, TEIXEIRA J J, VANDERPLAS B C, WESTONET N. Safe execution of a large-scale ozonolysis:Preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination[J]. Org Process Res Dev, 2003, 7(2):155-160. doi: 10.1021/op0202235
    [4] YANG J, ZHENG H, ZHU Y, ZHAO G, ZHANG C, TENG B, XIANG H, LI Y. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing c-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004, 5(9):505-510. doi: 10.1016/j.catcom.2004.06.005
    [5] YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable Sustainable Energy Rev, 2014, 38(5):663-676. https://www.sciencedirect.com/science/article/pii/S1364032114004559
    [6] NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013, 3(12):2655-2668. doi: 10.1021/cs400616p
    [7] 郭清泉, 陈焕钦.乙酰丙酸及其衍生物的研究进展[J].精细石油化工, 2003, 20(3):45-48. doi: 10.3969/j.issn.1003-9384.2003.03.016

    GUO Qing-quan, CHEN Huan-qin. Development on prepartion of levulinic acid and its derivatives[J]. Spec Petrochem, 2003, 20(3):45-48. doi: 10.3969/j.issn.1003-9384.2003.03.016
    [8] DENNEY D B, DENNEY D Z, GIGANTINO J J. Cyclodehydration of 1, 4-butanediols by pentaethoxyphosphorane[J]. J Org Chem, 1984, 49(15):2831-2832. doi: 10.1021/jo00189a044
    [9] BISWAS P, LIN J H, KANG J, GULIANTS V V. Vapor phase hydrogenation of 2-methylfuran over noble and base metal catalysts[J]. Appl Catal A:Gen, 2014, 475(5):379-385. https://www.researchgate.net/publication/260340394_Vapor_phase_hydrogenation_of_2-methylfuran_over_noble_and_base_metal_catalysts
    [10] SITTHISA S, SOOKNOI T, MA Y, BALBUENA P B, RESASCO D E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts[J]. J Catal, 2011, 277(1):1-13. doi: 10.1016/j.jcat.2010.10.005
    [11] DONG F, ZHU Y, DING G, CUI J, LI X, LI Y. One-step conversion of furfural into 2-methyltetrahydrofuran under mild conditions[J]. ChemSusChem, 2015, 8(9):1534-1537. doi: 10.1002/cssc.201500178
    [12] 王保伟, 尚玉光, 丁国忠, 王海洋, 王二东, 李振花, 马新宾, 秦绍东, 孙琦.铈铝复合载体对钼基催化剂耐硫甲烷化催化性能的研究[J].燃料化学学报, 2012, 40(11):1390-1396. doi: 10.3969/j.issn.0253-2409.2012.11.018

    WANG Bao-wei, SHANG Yu-guang, DING Guo-zhong, WANG Hai-yang, WANG Er-dong, LI Zhen-hua, MA Xin-bin, QIN Shao-dong, SUN Qi. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. J Fuel Chem Technol, 2012, 40(11):1390-1396. doi: 10.3969/j.issn.0253-2409.2012.11.018
    [13] 孙蛟, 任国卿, 黄玉辉, 陈晓蓉, 梅华.焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响[J].燃料化学学报, 2017, 45(1):43-47. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18960.shtml

    SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phese selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017, 45(1):43-47. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18960.shtml
    [14] SEPEHRI S, REZAEI M. Preparation of highly active nickel catalysts supported on mesoporous nanocrystallineγ-Al2O3 for methane autothermal reforming[J]. Chem Eng Technol, 2015, 38(9):1637-1645. doi: 10.1002/ceat.201400566
    [15] BSHISH A, YAAKOB Z, EBSHISH A, ALHASAN F H. Hydrogen production via ethanol steam reforming over Ni/Al2O3 catalysts:Effect of Ni loading[J]. J Energy Resour Technol, 2014, 136(1):1-13. https://ukm.pure.elsevier.com/en/publications/hydrogen-production-via-ethanol-steam-reforming-over-nial-sub2sub
    [16] ZHAO A, YING W, ZHANG H, MA H, FANG D. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catal Commun, 2012, 17(5):34-38. http://www.academia.edu/18629893/Fundamentals_properties_and_applications_of_solid_catalysts_prepared_by_solution_combustion_synthesis_SCS_
    [17] BASF European Company. One step preparation of 2-mthyltetrahydrofuran from furfural in structured-bed with two catalysts:CN, 101558052A[P]. 2009-11-25.
    [18] 莫勇, 王贵武, 陈茜文.超细Cu/Ni催化糠醛加氢合成2-甲基四氢呋喃[J].精细化工, 2013, 30(7):821-824. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxhg201307024&dbname=CJFD&dbcode=CJFQ

    MO Yong, WANG Gui-wu, CHEN Xi-wen. Liquid phase furfural hydrogenation to synthesize 2-methyltetrahydrofuran over Cu/Ni ultrafne mixed catalyst[J]. Fine Chem, 2013, 30(7):821-824. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxhg201307024&dbname=CJFD&dbcode=CJFQ
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  101
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2017-11-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回