留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临CO2气氛下钼基催化剂耐硫甲烷化性能研究

李振花 曲江磊 王玮涵 王保伟 马新宾

李振花, 曲江磊, 王玮涵, 王保伟, 马新宾. 临CO2气氛下钼基催化剂耐硫甲烷化性能研究[J]. 燃料化学学报(中英文), 2016, 44(8): 985-992.
引用本文: 李振花, 曲江磊, 王玮涵, 王保伟, 马新宾. 临CO2气氛下钼基催化剂耐硫甲烷化性能研究[J]. 燃料化学学报(中英文), 2016, 44(8): 985-992.
LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 985-992.
Citation: LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 985-992.

临CO2气氛下钼基催化剂耐硫甲烷化性能研究

基金项目: 

国家自然科学基金 21576203

国家高技术研究发展计划 863计划,2015AA050504

天津市应用基础与前沿技术研究计划重点项目资助 14JCZDJC37500

详细信息
  • 中图分类号: O643.3

Effect of CO2 in syngas on methanation performance of Mo-based catalyst

More Information
  • 摘要: 在反应温度550℃、空速5000h-1和1.2% H2S浓度下,考察了反应气中添加CO2对负载型Mo基催化剂甲烷化活性的影响。结果表明,添加CO2会促进逆水煤气变换反应,从而降低MoO3/Al2O3催化剂的耐硫甲烷化活性。与MoO3/Al2O3催化剂相比,添加CO2对铈铝复合载体负载的Co-Mo双组分催化剂的影响较小。通过表征发现,添加CO2引起催化剂活性下降的主要原因是由于其增强了逆水煤气变换反应过程,使甲烷化过程可用氢气量减小。另外,逆水煤气变换反应生成的水会影响催化剂表面结构和组成。在连续加入10% CO2 20h后停止加入CO2,催化剂的耐硫甲烷化活性可以得到恢复,因此,认为CO2加入量低于10%时,对催化剂及甲烷化反应的影响是可逆的;但CO2加入量大于10%后由于生成的水量增大会破坏催化剂的结构并减少活性位,从而造成催化剂的不可逆失活。
  • 图  1  10% CO2对Al2O3负载催化剂耐硫甲烷化活性的影响

    Figure  1  Effect of 10% CO2 on the activity of Mo-based catalysts

    (a): Mo/Al; (b): Co-Mo/Al

    图  2  10% CO2对Mo/CeAl催化剂的影响

    Figure  2  Effect of 10% CO2 on the activity of Mo/CeAl catalyst

    图  3  不同含量CO2对Co-Mo/CeAl催化活性的影响

    Figure  3  Effect of various CO2 concentrations on Co-Mo/CeAl catalyst activity

    (a): 10%CO2; (b): 20%CO2; (c): 30%CO2
    ■: x(CO); ○: s(CH4)

    图  4  CO2浓度对CO平衡转化率的影响

    Figure  4  Effect of CO2 concentrations on CO equilibrium conversion

    图  5  添加CO2反应后Mo基催化剂的XRD谱图

    Figure  5  XRD patterns of Mo-based catalysts after reaction

    (a): different catalysts with 10% CO2 added; (b): Co-Mo/CeAl catalyst at different CO2 concentrations

    图  6  10%CO2对Mo基催化剂影响的TEM照片

    Figure  6  TEM image of Mo-based catalysts with 10% CO2 added

    (a): Mo/Al; (b): Co-Mo/Al; (c): Mo/CeAl; (d): Co-Mo/CeAl

    图  7  不同CO2含量对Co-Mo/CeAl催化剂影响的TEM照片

    Figure  7  TEM image of Co-Mo/CeAl catalysts with different CO2 contents

    (a): 10% CO2; (b): 20% CO2; (c): 30% CO2

    表  1  Lurgi炉、GE (Texaco) 炉、Shell炉气化产品对比[9]

    Table  1  Comparion of gas composition from Lurgi, GE (Texaco) and Shell gasifier

    Gasifier typeComposition of gas φ/%
    H2COCO2CH4
    Lurgi38-4117-2128-3210-12
    GE (Texaco)36-3943-4616-18<0.01
    Shell26-3065-692-4<0.01
    下载: 导出CSV

    表  2  甲烷化反应前后Mo基催化剂的织构性质

    Table  2  Textural properties of Mo-based catalysts before and after reaction

    Mo-based catalystBET surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Pore size d/nm
    BRARNARBRARNARBRARNAR
    Mo/Al2041541560.250.260.146.06.04.4
    Co-Mo/Al1651331350.270.200.195.06.05.3
    Mo/CeAl118102880.280.350.167.813.05.8
    Co-Mo/CeAl1251151110.180.190.195.45.96.0
    BR: before reaciton; ARN: after reaction without CO2; AR: after reaction at 10% CO2 concentration
    下载: 导出CSV

    表  3  添加不同含量CO2经甲烷化反应前后Co-Mo/CeAl催化剂的织构性质

    Table  3  Textural properties of Co-Mo/CeAl catalyst before and after reaction with CO2 added

    Co-Mo/CeAl catalystBET surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Pore size d/nm
    ARN1150.195.9
    AR101110.196.0
    AR201000.268.2
    AR301030.288.3
    ARN:after reaction without CO2; AR10:after reaction at 10% CO2 concentration; AR20:after reaction at 20% CO2 concentration; AR30:after reaction at 30% CO2 concentration
    下载: 导出CSV
  • [1] 张东柯.面对人类社会可持续发展的能源选择[J].燃料化学学报, 2005, 33(4):399-406. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16583.shtml

    ZHANG Dong-ke.Energy options in sustainable development[J].J Fuel Chem Technol, 2005, 33(4):399-406. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16583.shtml
    [2] 胡亮华, 冯再南, 姚泽龙, 刘维, 申屠梁, 王俊峰.焦炉煤气甲烷化工艺过程的Aspen Plus模拟[J].天然气化工, 2013, 38(3):53-57. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201303013.htm

    HU Liang-hua, FENG Zai-nan, YAO Ze-long, LIU Wei, SHEN Tu-liang, WANG Jun-feng.Aspen Plus simulation of coke oven gas methanation process[J].Nat Gas Ind, 2013, 38(3):53-57. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201303013.htm
    [3] SABATIER P, SENDERENS J B.New synthesis of methane[J].CR Acad Sci Paris, 1902, 134:514-516.
    [4] SABATIER P, SENDERENS J B.Hydrogenation of CO over nickel to produce methane[J].J Soc Chim Ind, 1902, 21:504-506.
    [5] 黄国宝, 王志青, 李庆峰, 黄戒介, 房倚天, 液相中镍催化剂催化合成气甲烷化的初步研究[J].燃料化学学报, 2014, 42(8):952-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18470.shtml

    HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian.Syngas methanation over nickel catalyst in liquid-phase[J].J Fuel Chem Technol, 2014, 42(8):952-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18470.shtml
    [6] MINCHENER A J.Coal gasification for advanced power generation[J].Fuel, 2005, 84(17):2222-2235. doi: 10.1016/j.fuel.2005.08.035
    [7] SCHILDHAUER T J, SEEMANN M C, BIOLLAZ S M A.Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas[J].Ind Eng Chem Res, 2010, 49(15):7034-7038. doi: 10.1021/ie100510m
    [8] 吴且毅, 卿涛, 颜智.一种利用焦炉气合成甲烷的方法:中国, 101391935 A[P].2009-03-25.

    WU Qie-yi, QIN Tao, YAN Zhi.Method for synthesizing methane by using coke-oven gas:CN, 101391935 A[P].2009-03-25.
    [9] 黄明金, 郭成宇, 尹明大.一种合成氨原料气甲烷化工艺:中国, 1313241 A[P].2001-09-19.

    HUANG Ming-jin, GUO Cheng-yu, YIN Ming-da.Methanation process for raw gas of synthetic ammonia:CN, 1313241 A[P].2001-09-19.
    [10] GALLETTI C, SPECCHIAS, SARACCO G, SPECCHIA V.CO-selective methanation over Ru/γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J].Chem Eng Sci, 2010, 65(1):590-596. doi: 10.1016/j.ces.2009.06.052
    [11] 徐超, 王兴军, 胡贤辉, 陈雪莉, 王辅臣.镍基催化剂用于合成气甲烷化的实验研究[J].燃料化学学报, 2012, 40(2):216-220. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17886.shtml

    XU Chao, WANG Xing-jun, HU Xian-hui, CHEN Xue-li, WANG Fu-chen.Study on the syngas methanation of nickel-based catalyst[J].J Fuel Chem Technol, 2012, 40(2):216-220. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17886.shtml
    [12] GAO J J, LIU Q, GU F N, LIU B, ZHONG Z Y, SU F B.Recent advances in methanation catalysts for the production of synthetic natural gas[J].RSC Adv, 2015, 5(29):22759-22776. doi: 10.1039/C4RA16114A
    [13] 高聚忠.煤气化技术的应用与发展[J].洁净煤技术, 2013, (1):65-71. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201301018.htm

    GAO Ju-zhong.Application and development of coal gasification technologies[J].Clean Coal Technol, 2013, (1):65-71. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201301018.htm
    [14] 袁勇天, 尹燕华, 周旭, 周军成.CO、CO2及其共存体系的甲烷化反应[J].化工进展, 2014, 33(1):173-180.

    YUAN Yong-tian, YIN Yan-hua, ZHOU Xu, ZHOU Jun-cheng.Methanation of thoree diffenent reaction systems of carbon oxides[J].Chem Ind Eng Process, 2014, 33(1):173-180.
    [15] 易丽丽, 马磊, 卢春山, 李小年.CO2催化加氢甲烷化研究进展[J].化工生产与技术, 2004, 11(5):33-35, 43.

    YI Li-li, MA Lei, LU Chun-shan, LI Xiao-nian.Study on the catalytic hydrogenation of carbon dioxide for methanation[J].Chem Prod Technol, 2004, 11(5):33-35, 43.
    [16] JIMÉNEZ V, SANCHEZ P, PANAGIOTOPOULOU P, VALVERDE J, ROMERO A.Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts[J].Appl Catal A:Gen, 2010, 390(1/2):35-44.
    [17] PANAGIOTOPOULOU P, KONDARIDES D, VERKIOS X.Selective methanation of CO over supported noble metal catalysts:Effects of the nature of the metallic phase on catalytic performance[J].Appl Catal A:Gen, 2008, 344(1/2):45-54.
    [18] ECKLE S, ANFANG H, BEHM R.What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts[J].Appl Catal A:Gen, 2011, 391(1):325-333.
    [19] 王承学, 龚杰.二氧化碳加氢甲烷化镍锰基催化剂的研究[J].天然气化工, 2011, 36(1):4-15. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201101001.htm

    WANG Cheng-xue, GONG Jie.Study on Ni-Mn-based catalysts for methanation of carbon dioxide[J].Nat Gas Ind, 2011, 36(1):4-15. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201101001.htm
    [20] 王二东, 王海洋, 丁国忠, 尚玉光, 李振花, 王保伟, 马新宾, 秦绍东, 孙琦.不同工艺条件下耐硫甲烷化催化剂的反应活性研究[J].化学反应工程与工艺, 2012, 28(1):75-81. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY201201014.htm

    WANG Er-dong, WANG Hai-yang, DING Guo-zhong, SHANG Yu-guang, LI Zhen-hua, WANG Bao-wei, MA Xin-bin, QIN Shao-dong, SUN Qi.Effect of reaction parameters on the activity of sulfur-resistant methanation catalyst[J].Chem React Eng Technol, 2012, 28(1):75-81. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY201201014.htm
    [21] LI Z H, WANG H Y, WANG E D, LV J, SHANG Y G, DING G Z, WANG B W, MA X B, QIN S D, SU Q.The main factors controlling generation of synthetic natural gas by methanation of synthesis gas in the presence of sulphur-resistant Mo-based catalysts[J].Kinet Catal, 2013, 54(3):338-343. doi: 10.1134/S0023158413030117
    [22] WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q.Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J].Appl Catal A:Gen, 2012, 431-432(1):144-150.
    [23] LIN C, WANG H Y, LI Z H, WANG B W, MA X B, QIN S D, SUN Q.Effect of a promoter on the methanation activity of Mo-based sulfur-resistant catalyst[J].Front Chem Sci Eng, 2013, 7(1):88-94. doi: 10.1007/s11705-013-1301-1
    [24] 王保伟, 尚玉光, 丁国忠, 王海洋, 王二东, 李振花, 马新宾, 秦绍东, 孙琦.铈铝复合载体对钼基催化剂耐硫甲烷化催化性能的研究[J].燃料化学学报, 2012, 40(11):1390-1396. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18073.shtml

    WANG Bao-wei, SHANG Yu-guang, DING Guo-zhong, WANG Hai-yang, WANG Er-dong, LI Zhen-hua, MA Xin-bin, QIN Shao-dong, SUN Qi.Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J].J Fuel Chem Technol, 2012, 40(11):1390-1396. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18073.shtml
    [25] 崔晓曦, 曹会博, 孟凡会, 李忠.合成气甲烷化热力学计算分析[J].天然气化工, 2012, 37(5):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201205003.htm

    CUI Xiao-xi, CAO Hui-bo, MENG Fan-hui, LI Zhong.Thermodynamic analysis for methanation of syngas[J].Nat Gas Ind, 2012, 37(5):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201205003.htm
    [26] 陈宏刚, 王腾达, 张锴, 牛玉广, 杨勇平.合成气甲烷化反应积碳过程的热力学分析[J].燃料化学学报, 2013, 41(8):978-984. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18239.shtml

    CHENG Hong-gang, WANG Teng-da, ZHANG Kai, NIU Yu-guang, YANG Yong-ping.Thermodynamic analysis of carbon deposition on catalyst for the production of substitute natural gas[J].J Fuel Chem Technol, 2013, 41(8):978-984. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18239.shtml
    [27] 窦伯生, 谢筱帆, 王玉杰, 石新.Co-Mo-K/Al2O3水煤气变换催化剂的失硫与活性[J].石油化工, 1990, (6):387-389.

    DOU Bo-sheng, XIE Xiao-fan, WANG Yu-jie, SHI Xin.Sulfer loss and activity of Co-Mo-K/Al2O3 water gas shift catalyst[J].Petrochem Technol, 1990, (6):387-389.
    [28] LAURENT E, DELMON B.Influence of water in the deactivation of a sulfided NiMo/γ-Al2O3 catalyst during hydrodeoxygenation[J].J Catal, 1994, 146(1):281-285, 288-291. doi: 10.1016/0021-9517(94)90032-9
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  34
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 修回日期:  2016-04-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回