留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤燃烧过程中砷与氮氧化物的反应机理

邹潺 王春波 邢佳颖

邹潺, 王春波, 邢佳颖. 煤燃烧过程中砷与氮氧化物的反应机理[J]. 燃料化学学报(中英文), 2019, 47(2): 138-143.
引用本文: 邹潺, 王春波, 邢佳颖. 煤燃烧过程中砷与氮氧化物的反应机理[J]. 燃料化学学报(中英文), 2019, 47(2): 138-143.
ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 138-143.
Citation: ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 138-143.

煤燃烧过程中砷与氮氧化物的反应机理

基金项目: 

国家重点研发计划 2016YFB0600701

中央高校基本科研业务费专项资金 2017XS122

详细信息
  • 中图分类号: X511

Reaction mechanism of arsenic and nitrous oxides during coal combustion

Funds: 

the National Key R & D Program of China 2016YFB0600701

the Fundamental Research Funds for the Central Universities 2017XS122

More Information
  • 摘要: 应用量子化学密度泛函理论B3LYP方法,研究了砷与氮氧化物(N2O、NO2和NO)的反应机理。全参数优化了各反应物、中间体、过渡态和产物的几何构型,通过频率分析证实中间体和过渡态的真实性,并通过内禀反应坐标(IRC)计算以进一步确定过渡态。为了得到更精确的能量信息,在B2PLYP水平下计算各结构的单点能,并通过动力学参数深入分析其反应机理。结果表明,砷与三种氮氧化物(N2O、NO2和NO)的反应能垒分别为78.45、2.58、155.85 kJ/mol。在298-1800 K,各反应速率随温度的升高而增大。由于砷与NO2的反应能垒较低,其反应速率大于1012 cm3/(mol·s),说明该反应容易发生且速率极快。砷与N2O和NO的反应,在298-900 K,反应速率随温度的升高明显增加;当温度进一步升高,其增加的趋势有所减缓。
  • 图  1  As+N2O→AsO+N2的反应过程示意图

    Figure  1  Reaction process analysis of As+N2O→AsO+N2

    图  2  As+NO2→AsO+NO的反应过程示意图

    Figure  2  Reaction process analysis of As+NO2→AsO+NO

    图  3  As+NO→AsO+N的反应过程示意图

    Figure  3  Reaction process analysis of As+NO→AsO+N

    图  4  各反应lnk随反应温度的变化

    Figure  4  Values of lnk at different temperatures for each reaction

    表  1  各反应物、生成物键长和键角的计算值及实验值

    Table  1  Calculated and experimental bond lengths and bond angles

    Species Bond length (r/nm)
    Bond angle (θ/(°))
    Calculated value Exprimental value
    N2O r(N-O) 0.1184 0.1185[20]
    r(N-N) 0.1126 0.1127[20]
    θ(N-N-O) 180.00 180.00[20]
    N2 r(N-N) 0.1095 0.1098[20]
    NO2 r(N-O) 0.1194 0.1199[21]
    θ(O-N-O) 134.23 133.70[21]
    NO r(N-O) 0.1150 0.1151[22]
    AsO r(As-O) 0.1632 0.1624[23, 24]
    下载: 导出CSV

    表  2  反应通道各驻点的能量

    Table  2  Stationary point energy of each reaction

    Reaction B2PLYP/(a.u.) ZPE/(a.u.) Etot/(a.u.) Erel/(kJ·mol-1)
    (1) As+N2O -2420.19225 0.01125 -2420.18100 0
    TS -2420.15981 0.00869 -2420.15112 78.45
    AsO+N2 -2420.33202 0.00820 -2420.32382 -374.97
    (2) As+NO2 -2440.60933 0.00882 -2440.60051 0
    M -2440.68649 0.00904 -2440.67745 -202.01
    TS -2440.68426 0.00779 -2440.67647 -199.43
    AsO+NO -2440.69733 0.00727 -2440.69006 -235.11
    (3) As+NO -2365.42302 0.00453 -2365.41849 0
    M -2365.41799 0.00425 -2365.41374 12.47
    TS -2365.35649 0.00211 -2365.35438 168.32
    AsO+N -2365.38994 0.00247 -2365.38747 81.44
    下载: 导出CSV

    表  3  不同温度As+N2O→AsO+N2的动力学参数值

    Table  3  Kinetic parameters of the reaction As+N2O→AsO+N2 at different temperatures

    T/K A/(cm3·mol-1·s-1) k/(cm3·mol-1·s-1)
    298 6.48×1010 1.15×10-3
    600 8.76×1010 1.30×104
    900 1.05×1011 2.95×106
    1200 1.19×1011 4.57×107
    1500 1.29×1011 2.39×108
    1800 1.37×1011 7.26×108
    下载: 导出CSV

    表  4  不同温度As+NO2→AsO+NO的动力学参数值

    Table  4  Kinetic parameters of the reaction As+NO2→AsO+NO at different temperatures

    T/K A/(cm3·mol-1·s-1) k/(cm3·mol-1·s-1)
    298 8.52×1012 3.02×1012
    600 1.47×1013 8.80×1012
    900 1.82×1013 1.29×1013
    1200 2.03×1013 1.57×1013
    1500 2.17×1013 1.77×1013
    1800 2.27×1013 1.92×1013
    下载: 导出CSV

    表  5  不同温度As+ NO→AsO+ N的动力学参数值

    Table  5  Kinetic parameters of the reaction As+ NO→AsO+ N at different temperatures

    T/K A/(cm3·mol-1·s-1) k/(cm3·mol-1·s-1)
    298 1.02×1013 4.95×10-15
    600 1.80×1013 4.88×10-1
    900 2.31×1013 2.09×104
    1200 2.66×1013 4.38×106
    1500 2.92×1013 1.09×108
    1800 3.11×1013 9.33×108
    下载: 导出CSV

    表  6  反应动力学参数

    Table  6  Kinetic parameters for each reaction

    Reaction A/(cm3·mol-1·s-1) Ea/
    (kJ·mol-1)
    As+N2O→AsO+N2 1.48×1011 78.45
    As+NO2→AsO+NO 2.72×1013 2.58
    As+NO→AsO+N 3.69×1013 155.85
    下载: 导出CSV
  • [1] 李文秀, 王宝凤, 任杰, 张锴, 杨凤玲, 程芳琴.贫煤O2/CO2气氛下燃烧时内在矿物质对SO2和NOx排放特性的影响[J].燃料化学学报, 2017, 45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007

    LI Wen-xiu, WANG Bao-feng, REN Jie, ZHANG Kai, YANG Feng-ling, CHENG Fang-qin. Effect of mineral matter on emissions of SO2 and NOx during combustion of lean coal in O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2017, 45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007
    [2] WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust, 2018, 68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [3] LIU H, PAN W, WANG C, ZHANG Y. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600-1500℃[J]. Energy Fuels, 2016, 30(8):6790-6798. doi: 10.1021/acs.energyfuels.6b00816
    [4] LIU H, WANG C, ZOU C, ZHANG Y, WANG J. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017, 203:152-161. doi: 10.1016/j.fuel.2017.04.101
    [5] TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013, 107:315-322. doi: 10.1016/j.fuel.2013.01.009
    [6] ZHAO Y, ZHANG J, HUANG W, WANG Z, LI Y, SONG D, ZHAO F, ZHENG C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008, 49(4):615-624. doi: 10.1016/j.enconman.2007.07.044
    [7] ZIELINSKI R A, FOSTER A L, MEEKER G P, BROWNFIELD I K. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007, 86(4):560-572. doi: 10.1016/j.fuel.2006.07.033
    [8] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88:539-546. doi: 10.1016/j.fuel.2008.09.028
    [9] 刘迎晖, 郑楚光, 游小清, 郭欣.燃煤过程中易挥发有毒痕量元素的相互作用[J].燃烧科学与技术, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007
    [10] URBAN D R, WILCOX J. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases[J]. J Phys Chem A, 2006, 110(17):5847-5852. doi: 10.1021/jp055564+
    [11] MONAHAN-PENDERGAST M, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008, 42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
    [12] URBAN D R, WILCOX J. Theoretical study of the kinetics of the reactions Se + O2 → Se + O and As + HCl → AsCl + H[J]. J Phys Chem A, 2006, 110(28):8797-8801. doi: 10.1021/jp0628986
    [13] 雷鸣, 黄星智, 王春波.典型煤种O2/CO2/H2O气氛下中高温燃烧时NO的生成特性[J].动力工程学报, 2017, 37(6):432-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201706002

    LEI Ming, HUANG Xing-zhi, WANG Chun-bo. NO emission characteristics of typical coals under O2/CO2/H2O atmosphere at intermediate and high temperatures[J]. J Chin Soc Power Eng, 2017, 37(6):432-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201706002
    [14] 王春波, 岳爽, 许旭斌, 李一鹏. O2/CO2气氛下煤焦恒温燃烧NOx释放特性[J].煤炭学报, 2018, 43(1):257-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201801031

    WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx release of char in constant temperature combustion under O2/CO2 atmosphere[J]. J China Coal Soc, 2018, 43(1):257-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201801031
    [15] 肖海平, 周俊虎, 刘建忠, 孙保民, 叶力平.含硫物相对NO还原过程的影响[J].燃料化学学报, 2008, 36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024

    XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong, SUN Bao-ming, YE Li-ping. Effect mechanism of existence pattern of sulphur on reduction of NO[J]. J Fuel Chem Technol, 2008, 36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024
    [16] 刘晶, 郑楚光, 邱建荣.燃烧烟气汞反应的量子化学计算方法研究[J].工程热物理学报, 2007, 28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050

    LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Study on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007, 28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050
    [17] AWUAHA J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAHAD B, CATLOW C R A, DE LEEUW N H. A density functional theory study of arsenic immobilization by the Al(iii)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016, 18(16):11297-11305. doi: 10.1039/C6CP00190D
    [18] FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09, Revision D.01[J]. Gaussian, Inc., Wallingford, CT, 2009.
    [19] ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82(C):312-321.
    [20] SCHRÖDER B, SEBALD P, STEIN C, WESER O, BOTSCHWINA P. Challenging high-level ab initio rovibrational spectroscopy:The nitrous oxide molecule[J]. Z Phys Chem, 2015, 229(10/12):1663-1690.
    [21] BORISENKO K B, KOLONITS M, ROZSONDAI B, HARGITTAI I. Electron diffraction study of the nitrogen dioxide molecular structure at 294, 480, and 691 K[J]. J Mol Struct, 1997, 413-414:121-131. doi: 10.1016/S0022-2860(96)09588-9
    [22] MARSDEN C J, SMITH B J. AB initio force constants:A cautionary tale concerning nitrogen oxides[J]. J Mol Struct:Theochem, 1989, 187:337-357. doi: 10.1016/0166-1280(89)85174-7
    [23] EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of OH with the H2O laser:A galactic maser pump?[J]. Phys Rev Lett, 1970, 25(4):199-202. doi: 10.1103/PhysRevLett.25.199
    [24] MIZUSHIMA M. Molecular parameters of OH free radical[J]. Phys Rev A, 1972, 5(1):143-157. doi: 10.1103/PhysRevA.5.143
    [25] 王鹏乾, 王长安, 杜勇博, 张龙飞, 车得福. O2/CO2燃烧条件下NO2还原特性的实验研究[J].西安交通大学学报, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003

    WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental investigation on the NO2 reduction property under O2/CO2 combustion condition[J]. J Xi'an Jiaotong Univ, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003
    [26] JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017, 141:1538-1546. doi: 10.1016/j.energy.2017.11.115
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  52
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2018-11-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回