留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Smx/SiC催化剂甲烷二氧化碳重整性能研究

王冰 郭聪秀 王英勇 靳国强 郭向云

王冰, 郭聪秀, 王英勇, 靳国强, 郭向云. Ni-Smx/SiC催化剂甲烷二氧化碳重整性能研究[J]. 燃料化学学报(中英文), 2016, 44(5): 587-596.
引用本文: 王冰, 郭聪秀, 王英勇, 靳国强, 郭向云. Ni-Smx/SiC催化剂甲烷二氧化碳重整性能研究[J]. 燃料化学学报(中英文), 2016, 44(5): 587-596.
WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 587-596.
Citation: WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 587-596.

Ni-Smx/SiC催化剂甲烷二氧化碳重整性能研究

基金项目: 

国家重点基础研究发展规划 973 program

国家重点基础研究发展规划 2011CB201405

详细信息
    通讯作者:

    靳国强, Tel/Fax: 0351-4049306, E-mail: gqjin@sxicc.ac.cn

  • 中图分类号: TQ426

Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4

Funds: 

the Major State Basic Research Development Program of China 973 program

the Major State Basic Research Development Program of China 2011CB201405

  • 摘要: 用浸渍法制备了不同钐含量的Ni-Smx/SiC催化剂, 其中, 镍的质量分数为9%, 氧化钐的质量分数分别为0、2%、3%、4%、5%、7%。采用常压微型固定床反应器考察了不同催化剂在甲烷二氧化碳重整反应中的催化性能, 并用BET、ICP、XRD、H2-TPR、TG-DTA、XPS和TEM等技术对反应前后催化剂进行表征。结果表明, 加入钐后, 重整反应中甲烷和二氧化碳转化率明显提高。当钐含量为5%时, Ni-Sm5/SiC表现出最好的活性和稳定性, 而且反应后催化剂表面积炭量最少。其原因是钐的加入提高了活性组分与载体的相互作用, 有效减少了表面积炭、提高了催化剂的稳定性。
  • 图  1  不同Ni-Smx/SiC催化剂转化率和选择性随时间的变化

    Figure  1  Evolution of conversion and selectivity with time on stream over different catalysts

    reaction conditions: temperature=800 ℃, GHSV=10 000 mL/(g·h), CH4/CO2(molar ratio)=1.0
    (a): CH4 conversion; (b): CO2 conversion; (c): H2 selectivity; (d): CO selectivity

    图  2  反应空速对Ni-Sm5/SiC催化剂催化活性的影响

    Figure  2  Evolution of GHSV on catalytic activity of Ni-Sm5/SiC catalyst

    reaction conditions: temperature=800 ℃, CH4/CO2(molar ratio)=1.0

    图  3  Ni-Sm5/SiC催化剂甲烷二氧化碳重整稳定性

    Figure  3  Stability of Ni-Sm5/SiC catalyst

    reaction conditions: temperature=800 ℃, GHSV=10 000 mL/(g·h), CH4/CO2(molar ratio)=1.0

    图  4  各催化剂反应前后的XRD谱图

    Figure  4  XRD patterns of fresh (a) and used (b) catalysts

    图  5  反应前后Ni-Sm0/SiC的TEM照片和粒径分布

    Figure  5  TEM images ((a), (b)) and particle size distribution ((c), (d)) of fresh and used Ni-Sm0/SiC

    图  6  反应前后Ni-Sm5/SiC的TEM照片和粒径分布

    Figure  6  TEM images ((a), (b)) and particle size distribution ((c), (d)) of fresh and used Ni-Sm5/SiC

    图  7  不同催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of fresh catalysts calcined at 500 ℃

    图  8  反应后催化剂的TG-DTA曲线

    Figure  8  TG (a) and DTA (b) curves of the used catalysts

    图  9  不同催化剂反应前XPS谱图

    Figure  9  XPS spectra of fresh catalysts

    (a): Ni 2p of Ni-Sm0/SiC; (b): Ni 2p of Ni-Sm5/SiC; (c): C 1s of Ni-Sm0/SiC; (d): C 1s of Ni-Sm5/SiC; (e): Sm 3d of Ni-Sm5/SiC

    图  10  不同催化剂反应后XPS

    Figure  10  XPS spectra of the used catalysts

    (a): Ni 2p of Ni-Sm0/SiC; (b): Ni 2p of Ni-Sm5/SiC; (c): C 1s of Ni-Sm0/SiC; (d): C 1s of Ni-Sm5/SiC; (e): Sm 3d of Ni-Sm5/SiC

    表  1  载体和催化剂的物理化学性质

    Table  1  Physicochemical characteristics of the support and catalysts

    Sample BET surface
    area A/(m2·g-1)
    Actual content of metal w/%
    Ni Sm
    SiC 36.8
    Ni-Sm0/SiC 47.4 8.54
    Ni-Sm2/SiC 26.0 8.44 1.74
    Ni-Sm3/SiC 24.5 8.77 2.58
    Ni-Sm4/SiC 26.6 8.53 3.79
    Ni-Sm5/SiC 25.3 8.60 4.62
    Ni-Sm7/SiC 26.0 9.32 6.86
    下载: 导出CSV
  • [1] 王莉, 敖先权, 王诗瀚.甲烷与二氧化碳催化重整制取合成气催化剂[J].化学进展, 2012, 24(9): 1696-1706. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201209010.htm

    WANG Li, AO Xian-quan, WANG Shi-han. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Prog Chem, 2012, 24(9): 1696-1706. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201209010.htm
    [2] YANG R Q, XING C, LV C X, SHI L, TSUBAKI N. Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4[J]. Appl Catal A: Gen, 2010, 385(1/2): 92-100. http://www.sciencedirect.com/science/article/pii/S0926860X10004825
    [3] AMIN M H, MANTRI K, NEWNHAM J, TARDIO J. Highly stable ytterbium promoted Ni/gamma-Al2O3 catalysts for carbon dioxide reforming of methane[J]. Appl Catal B: Environ, 2012, 119: 217-226. http://www.sciencedirect.com/science/article/pii/S0926337312000963
    [4] GUO J J, LOU H, ZHAO H, CHAI D F, ZHENG X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A: Gen, 2004, 273(1/2): 75-82. https://www.researchgate.net/profile/Hui_Lou/publication/228485726_Dry_Reforming_of_Methane_over_Nickel_Catalysts_Supported_on_Magnesium_Aluminate_Spinels/links/02e7e522aa24d432a5000000.pdf
    [5] SARKAR B, TIWARI R, SINGHA R K, SUMAN S, GHOSH S, ACHARYYA S S, MANTRI K, KONATHALA L N S, PENDEM C, BAL R. Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5[J]. Catal Today, 2012, 198(1): 209-214. doi: 10.1016/j.cattod.2012.04.029
    [6] ZHANG Z L, VERYKIOS X E, MACDONALD S M, AFFROSSMAN S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts[J]. J Phys Chem, 1996, 100: 744-754. doi: 10.1021/jp951809e
    [7] SUN W Z, JIN G Q, GUO X Y. Partial oxidation of methane to syngas over Ni/SiC catalysts[J]. Catal Commun, 2005, 6(2): 135-139. doi: 10.1016/j.catcom.2004.11.013
    [8] LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008, 9(1): 51-54. doi: 10.1016/j.catcom.2007.05.002
    [9] WANG Q, SUN W Z, JIN G Q, WANG Y Y, GUO X Y. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas[J]. Appl Catal B: Environ, 2008, 79(4): 307-312. doi: 10.1016/j.apcatb.2007.10.032
    [10] ZHANG W D, LIU B S, ZHAN Y P, TIAN T L. Syngas production via CO2 reforming of methane over Sm2O3-La2O3-supported Ni catalyst[J]. Ind Eng Chem Res, 2009, 48: 7498-7504. doi: 10.1021/ie9001298
    [11] 郭朋飞, 靳国强, 郭聪秀, 王英勇, 童希立, 郭向云. Yb2O3助剂对Ni/SiC催化剂甲烷二氧化碳重整性能的影响[J].燃料化学学报, 2014, 42(6): 719-726. doi: 10.1016/S1872-5813(14)60033-5

    GUO Peng-fei, JIN Guo-qiang, GUO Chong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effect of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014, 42(6): 719-726. doi: 10.1016/S1872-5813(14)60033-5
    [12] ZHI G J, GUO X N, WANG Y Y, GUO X Y. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011, 16(1): 56-59. doi: 10.1016/j.catcom.2011.08.037
    [13] ZHANG W D, LIU B S, TIAN Y L. CO2 reforming of methane over Ni/Sm2O3-CaO catalyst prepared by a sol-gel technique[J]. Catal Commun, 2007, 8(4): 661-667. doi: 10.1016/j.catcom.2006.08.020
    [14] JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003, 60(1/3): 207-212. https://www.researchgate.net/publication/228415971_Synthesis_and_Characterization_of_Mesoporous_Silicon_Carbide
    [15] FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011, 13(12): 1309-1312. doi: 10.1016/j.elecom.2011.07.023
    [16] GUO J Z, HOU X Y, GAO J, ZHENG X M. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor[J]. Fuel, 2008, 87(7): 1348-1354. doi: 10.1016/j.fuel.2007.06.018
    [17] LIU B S, AU C Y. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas[J]. Appl Catal A: Gen, 2003, 244(1): 181-195. doi: 10.1016/S0926-860X(02)00591-4
    [18] YU M J, ZHU K, XIAO H P, DENG W, ZHOU X G. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B: Enviorn, 2014, 148-149: 177-190. doi: 10.1016/j.apcatb.2013.10.046
    [19] STAMATIN S N, SPEDER J, DHIMAN R, ARENZ M, SKOU E S. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells[J]. Acs Appl Mater Interfaces, 2015, 7(11): 6153-6161. doi: 10.1021/am508982d
    [20] LI J F, XIA C, AU C T, LIU B S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming[J]. Int J Hydrogen Energy, 2014, 39(21): 10927-10940. doi: 10.1016/j.ijhydene.2014.05.021
    [21] GÓMEZ-SAINERO L M, BAKER R T, METCALFE I S, SAHIBZADA M, LOPEZ-NIETO J M. Investigation of Sm2O3-CeO2-supported palladium catalysts for the reforming of methanol: The role of the support[J]. Appl Catal A: Gen, 2005, 294(2): 177-187. doi: 10.1016/j.apcata.2005.07.022
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  27
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-17
  • 修回日期:  2016-02-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回