留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体负载的金属框架Py/MOF-199的制备及其吸附脱硫性能

巩明月 李晓娟 张梅 宋华 赫英明

巩明月, 李晓娟, 张梅, 宋华, 赫英明. 离子液体负载的金属框架Py/MOF-199的制备及其吸附脱硫性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1175-1183.
引用本文: 巩明月, 李晓娟, 张梅, 宋华, 赫英明. 离子液体负载的金属框架Py/MOF-199的制备及其吸附脱硫性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1175-1183.
GONG Ming-yue, LI Xiao-juan, ZHANG Mei, SONG Hua, HE Ying-ming. Preparation of ionic liquid supported metal-organic framework Py/MOF-199 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1175-1183.
Citation: GONG Ming-yue, LI Xiao-juan, ZHANG Mei, SONG Hua, HE Ying-ming. Preparation of ionic liquid supported metal-organic framework Py/MOF-199 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1175-1183.

离子液体负载的金属框架Py/MOF-199的制备及其吸附脱硫性能

基金项目: 

国家自然科学基金 21276048

黑龙江省自然科学基金 ZD201201

黑龙江省教育厅面上项目 12541060

详细信息
  • 中图分类号: O643.361

Preparation of ionic liquid supported metal-organic framework Py/MOF-199 and its adsorption desulfurization performance

Funds: 

the National Natural Science Foundation of China 21276048

the Natural Science Foundation of Heilongjiang Province of China ZD201201

the General Program of Education Department of Heilongjiang Province 12541060

More Information
  • 摘要: 制备了金属框架MOF-199(Cu-BTC),并将[Hnmp][H2PO4]离子液体负载到MOF-199上合成了离子液体负载的金属框架Py/MOF-199。对吸附剂进行了X射线衍射、红外光谱、扫描电镜、比表面积表征。考察了MOF-199预处理条件、离子液体负载方式、负载量、负载温度、负载时间对噻吩吸附脱除性能的影响,通过正交实验优化了吸附剂的制备条件和吸附脱硫条件。结果表明,离子液体改性得到的Py/MOF-199保持了MOF-199的规则的八面体结构。Py/MOF-199的适宜制备条件为:采用二氯甲烷索氏提取并真空干燥法进行预处理MOF-199后,再用溶剂热法负载[Hnmp][H2PO4],负载温度为50 ℃,负载时间为8 h,负载量为7%。各因素对吸附剂脱硫性能影响大小顺序为:负载温度>负载时间>离子液体负载量。适宜Py/MOF-199吸附脱硫条件为:模拟油为10 mL,吸附剂用量0.2 g,吸附温度70 ℃,吸附时间1 h。在此条件下,噻吩脱除率可达到96.7%。
  • 图  1  MOF-199、Py/MOF-199、MOF-199 (BASF)的XRD谱图

    Figure  1  XRD patterns of MOF-199, Py/MOF-199 and MOF-199(BASF)

    图  2  MOF-199和Py/MOF-199的SEM照片

    Figure  2  SEM images of MOF-199 and Py/MOF-199

    (a): MOF-199; (b): Py/MOF-199(5.00 k×)

    图  3  MOF-199和Py/MOF-199的FT-IR谱图

    Figure  3  FT-IR spectra of MOF-199 and Py/MOF-199

    图  4  MOF-199和7%Py/MOF-199的孔径分布

    Figure  4  Distribution of pore size of MOF-199 and 7%Py/MOF-199

    图  5  预处理条件对MOF-199吸附脱硫活性的影响

    Figure  5  Effect of pretreatment conditions of MOF-199 on adsorptive desulfurization activity

    a: immersion in solvent; b: sweep with N2; c: dry in vacuum; d: Soxhlet extracted and dried in vacuum

    图  6  不同离子液体负载方式下Py/MOF-199的脱硫率

    Figure  6  Desulfurization rate of Py/MOF-199 with different loading methods of ionic liquid

    a: dip-molding; b: solvothermal method; c: microwave method; d: ultrasonic method

    图  7  不同离子液体负载量下Py/MOF-199的脱硫率

    Figure  7  Desulfurization rate of Py/MOF-199 with different ionic liquid loading

    图  8  不同负载温度下Py/MOF-199的脱硫率

    Figure  8  Desulfurization rate of Py/MOF-199 with different ionic liquid loading temperature

    图  9  不同离子液体负载时间下Py/MOF-199的脱硫率

    Figure  9  Desulfurization rate of Py/MOF-199 with different ionic liquid loading time

    图  10  吸附温度对吸附脱硫性能的影响

    Figure  10  Effect of adsorption temperature on the adsorptive desulfurization performance

    图  11  吸附时间对吸附脱硫性能的影响

    Figure  11  Effect of adsorption time on the adsorptive desulfurization performance

    图  12  吸附剂用量对吸附脱硫性能的影响

    Figure  12  Effect of adsorbent dosage on the adsorptive desulfurization performance

    图  13  Py/MOF-199吸附剂的重复利用性能

    Figure  13  Reusability of Py/MOF-199 adsorbent

    表  1  MOF-199和Py/MOF-199吸附剂的BET比表面积、孔隙体积和孔径

    Table  1  BET surface area pore volume and pore size of the adsorbents

    Adsorbent BET area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm
    MOF-199 1362 0.71 2.13
    7%Py/MOF-199 1074 0.62 2.35
    下载: 导出CSV

    表  2  正交试验因素水平

    Table  2  Level of the factors of orthogonal test

    Level Factor
    temperature t/℃ time t/h ionic liquid content w/%
    A B C
    1 40 6 6
    2 50 8 7
    3 60 10 8
    下载: 导出CSV

    表  3  离子液体负载条件影响因素正交试验直观分析表

    Table  3  Visual analysis table of orthogonal test for influencing factors of ionic liquid loading condition

    Test Temperature t/℃ Time t/h Ionic liquid content Rate of thiophene removal
    A B C
    1 40 6 6% 64.6%
    2 40 8 7% 67.7%
    3 40 10 8% 73.5%
    4 50 6 7% 73.8%
    5 50 8 8% 69.7%
    6 50 10 6% 66.2%
    7 60 6 8% 58.7%
    8 60 8 6% 69.0%
    9 60 10 7% 61.1%
    K1 205.9% 197.2% 199.8%
    K2 209.8% 206.5% 202.7%
    K3 188.8% 200.8% 202.0%
    Average k1 68.6% 65.7% 66.6%
    Average k2 69.9% 68.8% 67.6%
    Average k3 62.9% 66.9% 67.3%
    Range R 5.7% 3.1% 0.9%
    Primary order A>B>C
    Superior level A2 B2 C2
    Superior combination A2B2C2
    Kn is the comprehensive removal rate of thiophene at different levels of the same influence factor; kn is the average removal rate of thiophene at different levels of the same influence factor; R=kmax-kmin is the difference between the maximum removal rate and the minimum removal rate of thiophene for the same influence factor
    下载: 导出CSV
  • [1] CHEN X C, SONG D D, ASUMANA C, YU G R. Deep oxidative desulfurization of diesel fuels by lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride[J]. J Mol Catal A:Chem, 2012, 359:8-13. doi: 10.1016/j.molcata.2012.03.014
    [2] ULLAH R, BAI P, WU P, LIU B, SUBHAN F, YAN Z. Cation-anion double hydrolysis derived mesoporous mixed oxides for reactive adsorption desulfurization[J]. Microporous Mesoporous Mater, 2017, 238:36-45. doi: 10.1016/j.micromeso.2016.02.037
    [3] YANG C P, ZHAO K, CHEN Y, ZENG G M, ZHANG M M, SHAO J J, LU L. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve[J]. Sep Purif Technol, 2016, 163:153-161. doi: 10.1016/j.seppur.2016.02.050
    [4] LEE K X, VALLA J A. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Appl Catal B:Environ, 2017, 201:359-369. doi: 10.1016/j.apcatb.2016.08.018
    [5] LENG K Y, SUN Y Y, ZHANG X, YU M, XU W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene[J]. Fuel, 2016, 174:9-16. doi: 10.1016/j.fuel.2016.01.070
    [6] YANG Q Y, LIU D H, ZHONG C L, LI J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013, 113(10):8261-8323. doi: 10.1021/cr400005f
    [7] WU H H, GONG Q H, OLSON D H, LI J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J]. Chem Rev, 2012, 112(2):836-868. doi: 10.1021/cr200216x
    [8] DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chem Rev, 2014, 114(11):5695-5727. doi: 10.1021/cr4006473
    [9] SUN W, LIN L C, PENG X, SMIT B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases[J]. AIChE J, 2014, 60(6):2314-2323. doi: 10.1002/aic.14467
    [10] ACHMANN S, HAGEN G, HAMMERLE M, MALKOWSKY I, KIENER C, MOOS R. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks[J]. Fuel Process Technol, 2010, 33(2):275-280. http://cn.bing.com/academic/profile?id=ecb53834c37cb01c6cf232d259e9c099&encoded=0&v=paper_preview&mkt=zh-cn
    [11] TAN P, XIE X Y, LIU X Q, PAN T, GU C, CHEN P F, ZHOU J Y, PAN Y C, SUN L B. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. J Hazard Mater, 2017, 321:344-352. doi: 10.1016/j.jhazmat.2016.09.026
    [12] SZANYI J, DATURI M, CLET G, BAER D R, PEDEN C H F. Well-studied Cu-BTC still serves surprises:Evidence for facile Cu2+/Cu+ interchange[J]. Phys Chem Chem Phys, 2012, 14(13):4383-4390. doi: 10.1039/c2cp23708c
    [13] WU L M, XIAO J, WU Y, XIAN S K, MIAO G, WANG H H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014, 30(4):1080-1088. doi: 10.1021/la404540j
    [14] 王均凤, 张锁江, 陈慧萍, 李闲, 张密林.离子液体的性质及其在催化反应中的应用[J].过程工程学报, 2003, 3(2):177-185. doi: 10.3321/j.issn:1009-606X.2003.02.016

    WANG Jun-feng, ZHANG Suo-jiang, CHEN Hui-ping, LI Xian, ZHANG Mi-lin. Properties of ionic liquids and its applications in catalytic reactions[J]. Chin J Process Eng, 2003, 3(2):177-185. doi: 10.3321/j.issn:1009-606X.2003.02.016
    [15] BABUCCI M, FANG C Y, HOFFMAN A S, BARE S R, GATES B C, UZUN A. Tuning the selectivity of single-site supported metal catalysts with ionic liquids[J]. ACS Catal, 2017, 7(10):6969-6972. doi: 10.1021/acscatal.7b02429
    [16] KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014, 20(2):376-380. doi: 10.1002/chem.v20.2
    [17] BORFECCHIA E, MAURELLI S, GIANOLIIO D, GROPPO E, CHIESA M, BONINO F, LAMBERTI C. Insights into adsorption of NH3 on HKUST-1 metal-organic framework:A multitechnique approach[J]. J Phys Chem C, 2012, 116(37):19839-19850. doi: 10.1021/jp305756k
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  64
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-08-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-10-10

目录

    /

    返回文章
    返回