留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Co、Ni-Cu双金属合金催化剂用于CO甲烷化

李晶 刘贵龙 王嘉明 刘源

李晶, 刘贵龙, 王嘉明, 刘源. Ni-Co、Ni-Cu双金属合金催化剂用于CO甲烷化[J]. 燃料化学学报(中英文), 2020, 48(5): 610-618.
引用本文: 李晶, 刘贵龙, 王嘉明, 刘源. Ni-Co、Ni-Cu双金属合金催化剂用于CO甲烷化[J]. 燃料化学学报(中英文), 2020, 48(5): 610-618.
LI Jing, LIU Gui-long, WANG Jia-ming, LIU Yuan. Ni-Co and Ni-Cu bimetallic alloy catalysts for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 610-618.
Citation: LI Jing, LIU Gui-long, WANG Jia-ming, LIU Yuan. Ni-Co and Ni-Cu bimetallic alloy catalysts for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 610-618.

Ni-Co、Ni-Cu双金属合金催化剂用于CO甲烷化

基金项目: 

国家自然科学基金 51904152

国家自然科学基金 21872101

国家自然科学基金 21576192

国家自然科学基金 21962014

详细信息
    通讯作者:

    刘源Tel: 13702112319, E-mail:yuanliu@tju.edu.cn

  • 中图分类号: O643.38

Ni-Co and Ni-Cu bimetallic alloy catalysts for CO methanation

Funds: 

the National Natural Science Foundation of China 51904152

the National Natural Science Foundation of China 21872101

the National Natural Science Foundation of China 21576192

the National Natural Science Foundation of China 21962014

  • 摘要: 以钙钛矿型复合氧化物LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3为前驱体制备了Ni-Co/La2O3和Ni-Cu/La2O3双金属合金催化剂。结果表明,双金属合金催化剂中,各组分间相互稀释,具有较强的抗烧结性能;催化剂表面的积炭主要取决于CO在催化剂表面的吸附形态,Ni-Co双金属催化剂中,Co掺杂改变了CO在催化剂表面的吸附形式和吸附强度,使得Ni-Co双金属催化剂具有较强的抗积炭性能。Ni-Co双金属合金催化剂用于CO甲烷化反应时,显现出较好的活性、选择性和稳定性。
  • 图  1  LaNiO3、LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3前驱体的H2-TPR谱图

    Figure  1  2-TPR profiles of the LaNiO3, LaNi0.9Co0.1O3 and LaNi0.9Cu0.1O3 precursors

    图  2  LaNiO3、LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3前驱体(a)、还原后(b)和活性测试后(c)的XRD谱图; (c)图在2θ=43.5°-45.5°的局部放大图(d)

    Figure  2  XRD patterns of the LaNiO3, LaNi0.9Co0.1O3 and LaNi0.9Cu0.1O3 precursor (a), after reduction (b) and after reaction (c); the enlarged partial view of (c) with 2θ value between 43.5°-45.5° (d)

    图  3  N/L、NCo/L和NCu/L催化剂还原后的La 3d和Ni 2p的XPS谱图(a);NCo/L催化剂还原后的Co 2p的XPS谱图(b);NCu/L催化剂还原后的Cu 2p的XPS谱图(c)

    Figure  3  XPS spectra for La 3d and Ni 2p of the N/L, NCo/L and NCu/L catalysts after reduction (a); XPS spectra for Co 2p of NCo/L after reduction (b); XPS spectra for Cu 2p of NCu/L catalysts after reduction (c)

    图  4  N/L、NCo/L和NCu/L催化剂的CO-TPD谱图

    Figure  4  CO-TPD profiles of the N/L, NCo/L and NCu/L catalysts

    图  5  N/L、NCo/L和NCu/L催化剂的催化性能

    Figure  5  Catalytic performance of the N/L, NCo/L and NCu/L catalysts reaction conditions: GHSV of 15000mL/(gcat·h), H2/CO/N2=3:1:1, atmospheric pressure

    图  6  N/L、NCo/L和NCu/L催化剂的稳定性

    Figure  6  Stability test of the N/L, NCo/L and NCu/L catalysts reaction conditions: 600℃, GHSV of 15000mL/(gcat·h), H2/CO/N2=3:1:1, atmospheric pressure

    图  7  稳定性测试后N/L、NCo/L和NCu/L催化剂的催化性能

    Figure  7  Catalytic performance of the N/L, NCo/L and NCu/L catalysts after the stability tests reaction conditions: GHSV of 15000mL/(gcat·h), H2/CO/N2=3:1:1, atmospheric pressure

    图  8  N/L、NCo/L和NCu/L稳定性测试后样品的TG曲线

    Figure  8  TG results of the N/L, NCo/L and NCu/L catalytst after the stability tests

    表  1  LaNiO3、LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3前驱体的耗氢量

    Table  1  H2 consumption of the LaNiO3, LaNi0.9Co0.1O3 and LaNi0.9Cu0.1O3 precursors

    Sample Experiment values/(μmol·(0.05 gcat)-1)a Theoretical values/(μmol·(0.05 gcat)-1)
    TL TH Ni3+-Ni2+ Co3+-Co2+ Cu2+-Cu+ Ni2+-Ni0 Co2+-Co0 Cu+-Cu0
    NO 102.0 202.7 101.8 - - 203.6 -
    NCoO 101.6 203.6 91.6 10.2 - 183.2 20.4
    NCuO 101.6 192.3 91.4 - 10.15 182.9 - 10.15
    a: calculated by using the TPR peak area of pure CuO as benchmark
    下载: 导出CSV

    表  2  N/L、NCo/L和NCu/L催化剂及其稳定性测试后的晶粒粒径

    Table  2  Average crystalline size of the N/L, NCo/L and NCu/L catalysts before and after the stability tests

    Sample Dmetala /nm Degree of sinteringb/%
    after reduction after stability test
    N/L 12.1 18.6 52.7
    NCo/L 15.8 20.9 32.3
    NCu/L 14.9 20.8 39.6
    a: calculated from XRD results with Scherrer formula:$D = k\lambda /\left( {\beta \cos \theta } \right) $;
    b: calculated from XRD results by the design formula:${\rm{De}}{{\rm{g}}_{{\rm{sinter}}}} = \frac{{\left( {{D_{{\rm{spent}}}} - {D_{{\rm{reduction}}}}} \right)}}{{{D_{{\rm{reduction}}}}}} $
    下载: 导出CSV
  • [1] YAO Y, YU F, LI J, LI J, LI Y, WANG Z, ZHU M, SHI Y, DAI B, GUO X. Two-dimensional NiAl layered double oxides as non-noble metal catalysts for enhanced CO methanation performance at low temperature[J]. Fuel, 2019, 255:115770. doi: 10.1016/j.fuel.2019.115770
    [2] HUSSAIN I, JALIL A A, MAMAT C R, SIANG T J, AZAMI M S, HAMBALI H U. Role of promoters in hoisting the catalytic performance for enhanced CO methanation[J]. J Energy Safety Technol, 2019, 2(1):15-20. doi: 10.11113/jest.v2n1.38
    [3] 熊伟, 定明月, 涂军令, 陈伦刚, 王铁军, 张琦, 马隆龙.不同载体Ni基催化剂生物质热解气甲烷化反应性能[J].燃料化学学报, 2014, 42(8):958-964. doi: 10.3969/j.issn.0253-2409.2014.08.010

    XIONG Wei, DING Ming-yue, TU Jun-ling, CHEN Lun-gang, WANG Tie-jun, ZHANG Qi, MA Long-long. Methanation of biomass pyrolysis gas over Ni catalyst with different supports[J]. J Fuel Chem Technol, 2014, 42(8):958-964. doi: 10.3969/j.issn.0253-2409.2014.08.010
    [4] ATKINSON G B, NICKS L J. Mischmetal-nickel alloys as methanation catalysts[J]. J Catal, 1977, 46(3):417-419. doi: 10.1016/0021-9517(77)90226-3
    [5] 徐超, 王兴军, 胡贤辉, 陈雪莉, 王辅臣, 镍基催化剂用于合成气甲烷化的实验研究[J].燃料化学学报, 2012, 40(2):216-220. doi: 10.3969/j.issn.0253-2409.2012.02.014

    XU Chao, WANG Xing-jun, HU Xian-hui, CHEN Xue-li, WANG Fu-chen. Study on the syngas methanation of nickel-based catalyst[J]. J Fuel Chem Technol, 2012, 40(2):216-220. doi: 10.3969/j.issn.0253-2409.2012.02.014
    [6] WANG F, LI Y, CAI W, ZHAN E, MU X, SHEN W. Ethanol steam reforming over Ni and Ni-Cu catalysts[J]. Catal Today, 2009, 146(1/2):31-36. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200503018
    [7] TAKEGUCHIA T, KANIA Y, YANOA T, KIKUCHIA R, EGUCHIA K, TSUJIMOTOB K, UCHIDAC Y, UENOC A, OMOSHIKIC K, AIZAWAC M. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. J Power Sources, 2002, 112:588-595. doi: 10.1016/S0378-7753(02)00471-8
    [8] LIU P, ZHAO B, LI S, SHI H, MA M, LU J, YANG F, DENG X, JIA X, MA X, YAN X. Influence of the microstructure of Ni-Co bimetallic catalyst on CO methanation[J]. Ind Eng Chem Res, 2020, 59(5):1845-1854. doi: 10.1021/acs.iecr.9b05951
    [9] KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization[J]. Appl Catal A:Gen, 2007, 320:98-104. doi: 10.1016/j.apcata.2006.12.017
    [10] TANAKAA H, MISONOB M. Advances in designing perovskite catalysts[J]. Curr Opin Solid State Mater Sci, 2001, 5:381-387. doi: 10.1016/S1359-0286(01)00035-3
    [11] SILVA C R B, DA CONCEICÃO L, RIBEIRO N F P, SOUZA M M V M. Partial oxidation of methane over Ni-Co perovskite catalysts[J]. Catal Commun, 2011, 12(7):665-668. doi: 10.1016/j.catcom.2010.12.025
    [12] MANEERUNG T, HIDAJAT K, KAWI S. LaNiO3 perovskite catalyst precursor for rapid decomposition of methane:Influence of temperature and presence of H2 in feed stream[J]. Catal Today, 2011, 171(1):24-35. doi: 10.1016/j.cattod.2011.03.080
    [13] LI S, TANG H, GONG D, MA Z, LIU Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas[J]. Catal Today, 2017, 297:298-307. doi: 10.1016/j.cattod.2017.06.014
    [14] GALLEGO G N S, BATIOT-DUPEYRAT C, BARRAULT J L, FLOREZ E, MONDRAGO'N F. Dry reforming of methane over LaNi1-yByOδ (B=Mg, Co) perovskites used as catalyst precursor[J]. Appl Catal A:Gen, 2008, 334(1/2):251-258. https://www.sciencedirect.com/science/article/abs/pii/S0926860X07006321
    [15] LI C, ZHOU G, WANG L, DONG S, LI J, CHENG T. Effect of ceria on the MgO-γ-Al2O3 supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination[J]. Appl Catal A:Gen, 2011, 400(1/2):104-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3332938a8ef6f5efd20c5daa47676f0
    [16] TOUAHRA F, CHEBOUT R, LERARI D, HALLICHE D, BACHARI K. Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane[J]. Energy, 2019, 171:465-474. doi: 10.1016/j.energy.2019.01.085
    [17] ZHONG S, SUN Y, XIN H, YANG C, CHEN L, LI X. NO oxidation over Ni-Co perovskite catalysts[J]. Chem Eng J, 2015, 275:351-356. doi: 10.1016/j.cej.2015.04.046
    [18] RAMESH S, YANG E H, JUNG J S, MOON D J. Copper decorated perovskite an efficient catalyst for low temperature hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2015, 40(35):11428-11435. doi: 10.1016/j.ijhydene.2015.02.013
    [19] DE LIMA S M, DA SILVA A M, DA COSTA L O O, ASSAF J M, JACOBS G, DAVIS B H, MATTOS L V, NORONHA F B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol[J]. Appl Catal A:Gen, 2010, 377(1/2):181-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60bcae143ea15026f2a430516736a913
    [20] LIU F, QU Y, YUE Y, LIU G, LIU Y. Nano bimetallic alloy of Ni-Co obtained from LaCoxNi1-xO3 and its catalytic performance for steam reforming of ethanol[J]. RSC Adv, 2015, 5(22):16837-16846. doi: 10.1039/C4RA14131H
    [21] WANG Z, WANG C, CHEN S, LIU Y. Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen[J]. Int J Hydrogen Energy, 2014, 39(11):5644-5652. doi: 10.1016/j.ijhydene.2014.01.151
    [22] MEERTEN R Z C V, BEAUMONT A H G M, NISSELROOIJ P F M T V, COENEN J W E. Structure sensitivity and crystallite size change of nickel during methanantion of CO/H2 on Nickel-Silica catalysts[J]. Surf Sci, 1983, 135:565-579. doi: 10.1016/0039-6028(83)90242-X
    [23] O S, YAN J, WANG H, WANG Z, JIANG Q. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2H4·H2O at room temperature[J]. J Power Sources, 2014, 262:386-390. doi: 10.1016/j.jpowsour.2014.03.059
    [24] ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011, 16(1):56-59. doi: 10.1016/j.catcom.2011.08.037
    [25] BENJARAM M. REDDYA, BISWAJIT CHOWDHURY A, SMIRNIOTIS P G. An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts[J]. Appl Catal A:Gen, 2001, 219:53-60. doi: 10.1016/S0926-860X(01)00658-5
    [26] 刘新华, 苗茵, 李晓丽, 盛世善. La2O3对Ni/γ-Al2O3甲烷化催化剂的助催化作用[J].物理化学学报, 1995, 11(8):746-750. doi: 10.3866/PKU.WHXB19950816

    LIU Xin-hua, MIAO Yin, LI Xiao-li, SHENG Shi-shan. The promoting effect of La2O3 on Ni/γ-Al2O3 methanation catalyst[J]. Acta Phys-Chim Sin, 1995, 11(8):746-750. doi: 10.3866/PKU.WHXB19950816
    [27] MAO M, XU J, LI L, ZHAO S, LI X, LI Y, LIU Z. High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light[J]. Ionics, 2019, 25(10):4533-4546. doi: 10.1007/s11581-019-03210-2
    [28] MCINTYRE N S, JOHNSTON D D, COATSWORTH L L, DAVIDSON R D, BROWN J R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. Surf Interface Anal, 1990, 15:265-272. doi: 10.1002/sia.740150406
    [29] KLEIN J C, HERCULES D M. Surface characterization of model urushibara catalysts[J]. J Catal, 1983, 82:424-441. doi: 10.1016/0021-9517(83)90209-9
    [30] LIU Q, TIAN Y, AI H. Methanation of carbon monoxide on ordered mesoporous NiO-TiO2-Al2O3 composite oxides[J]. RSC Adv, 2016, 6(25):20971-20978. doi: 10.1039/C6RA00392C
    [31] WAGNER C D. Chemical shifts of auger lines, and the auger parameter[J]. Faraday Discuss Chem Soc, 1975, 60:291-300. doi: 10.1039/dc9756000291
    [32] CHAPMAN D. Electronegativity and the stability of metal complexes[J]. Nature, 1954, 174:887-888. doi: 10.1038/174887a0
    [33] LOUZGUINE D V, INOUE A. Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses[J]. Appl Phys Lett, 2001, 79(21):3410-3412. doi: 10.1063/1.1420781
    [34] ARANDIYAN H, KASAEIAN G, NEMATOLLAHI B, WANG Y, SUN H, BARTLETT S, DAI H, REZAEI M. Self-assembly of flower-like LaNiAlO3-supported nickel catalysts for CO methanation[J]. Catal Commun, 2018, 115:40-44. doi: 10.1016/j.catcom.2018.07.001
    [35] OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions[J]. J Catal, 1982, 74:173-182. doi: 10.1016/0021-9517(82)90020-3
    [36] ZENG Y, MA H, ZHANG H, YING W, FANG D. Highly efficient NiAl2O4 -free Ni/γ-Al2O3 catalysts prepared by solution combustion method for CO methanation[J]. Fuel, 2014, 137:155-163. doi: 10.1016/j.fuel.2014.08.003
    [37] TEJUCA L G, FIERRO J L G. XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide[J]. Thermochim Acta, 1989, 147(2):361-375. doi: 10.1016/0040-6031(89)85191-3
    [38] SAW E T, OEMAR U, TAN X R, DU Y, BORGNA A, HIDAJAT K, KAWI S. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction:Methane suppression via enhanced CO adsorption[J]. J Catal, 2014, 314:32-46. doi: 10.1016/j.jcat.2014.03.015
    [39] YU Y, JIN G, WANG Y, GUO X. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts[J]. Catal Commun, 2013, 31:5-10. doi: 10.1016/j.catcom.2012.11.005
    [40] LIU J, CAO A, SI J, ZHANG L, HAO Q, LIU Y. Nanoparticles of Ni-Co alloy derived from layered double hydroxides and their catalytic performance for CO methanation[J]. NANO, 2016, 11(10):1650118. doi: 10.1142/S1793292016501186
    [41] TAVARES M T, ALSTRUP I, BERNARDO C A A. Coking and decoking during methanation and methane decomposition on Ni-Cu supported catalysts[J]. Mater Corros, 1999, 50:681-685. doi: 10.1002/(SICI)1521-4176(199912)50:12<681::AID-MACO681>3.0.CO;2-5
    [42] KANG N, YANG Q, AN K, LI S, ZHANG L, LIU Y. Mixed oxides of La-Ga-O modified Co/ZrO2 for higher alcohols synthesis from syngas[J]. Catal Today, 2019, 330:46-53. doi: 10.1016/j.cattod.2018.01.034
    [43] SAN JOSÉ ALONSO D, JUAN-JUAN J, ILLÁN-GÓMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A:Gen, 2009, 371(1/2):54-59. doi: 10.1016/j.apcata.2009.09.026
    [44] MA S, TAN Y, HAN Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts[J]. J Nat Gas Chem, 2011, 20(4):435-440. doi: 10.1016/S1003-9953(10)60192-2
    [45] ESTEPHANE J, AOUAD S, HANY S, EL KHOURY B, GENNEQUIN C, EL ZAKHEM H, EL NAKAT J, ABOUKAÏS A, ABI AAD E. CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study[J]. Int J Hydrogen Energy, 2015, 40(30):9201-9208. doi: 10.1016/j.ijhydene.2015.05.147
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  70
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-04-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回