留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory

LI Zhan-ku WANG Hai-tao YAN Hong-lei YAN Jing-chong LEI Zhi-ping REN Shi-biao WANG Zhi-cai KANG Shi-gang SHUI Heng-fu

李占库, 王海涛, 闫洪雷, 颜井冲, 雷智平, 任世彪, 王知彩, 康士刚, 水恒福. 低阶煤中氢键作用的色散校正密度泛函理论研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1153-1159.
引用本文: 李占库, 王海涛, 闫洪雷, 颜井冲, 雷智平, 任世彪, 王知彩, 康士刚, 水恒福. 低阶煤中氢键作用的色散校正密度泛函理论研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1153-1159.
LI Zhan-ku, WANG Hai-tao, YAN Hong-lei, YAN Jing-chong, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1153-1159.
Citation: LI Zhan-ku, WANG Hai-tao, YAN Hong-lei, YAN Jing-chong, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1153-1159.

低阶煤中氢键作用的色散校正密度泛函理论研究

基金项目: 

the National Key Research and Development Program of China 2018YFB0604600

the Natural Science Foundation of China 21776001

the Natural Science Foundation of China 21878001

the Natural Science Foundation of China U1710114

the Natural Science Foundation of China 21875001

the Natural Science Foundation of China 21808002

Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology CHV19-01

详细信息
  • 中图分类号: TQ530

Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory

Funds: 

the National Key Research and Development Program of China 2018YFB0604600

the Natural Science Foundation of China 21776001

the Natural Science Foundation of China 21878001

the Natural Science Foundation of China U1710114

the Natural Science Foundation of China 21875001

the Natural Science Foundation of China 21808002

Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology CHV19-01

More Information
  • 摘要: 本研究以苯酚…苯酚、苯酚…苯、苯酚…二苯醚、苯酚…喹啉和苯甲酸…苯甲酸为对象,采用色散校正的密度泛函理论分别研究褐煤中自缔合OH、OH-π、OH-醚O、OH-N和COOH-COOH之间形成的氢键。此外,还研究了氢键供体中取代基(CH3-、CH3O-、OH-、NH2-、COOH-和NO2-)对氢键的影响。对上述复合物进行了几何优化,并计算了能量、Mulliken电荷分布及振动频率。从优化的结构中可以看出上述复合物之间都存在氢键,所有复合物中O-H键键长都比苯酚中自由羟基的长,这表明这些复合物之间存在相互作用。其中,羧酸…羧酸复合物中O-H键的键长最长。此外,通过Mulliken电荷分布可看出上述复合物之间存在电荷转移。基于振动频率分析,所有的O-H键伸缩振动都发生了红移,尤其是羧酸…羧酸和苯酚…喹啉复合物,这可为煤中羟基振动的红外光谱分析提供依据。根据键能不同氢键强度按以下顺序依次递减:COOH-COOH>OH-N >自缔合OH≈OH-醚O > OH-π,这与振动频率的分析结果一致。此外,不同取代基对氢键作用的影响不同。
  • Figure  1  Optimized geometric structures of the non-substituted complexes

    Figure  2  Bond lengths of O-H and H…X bonds in the different complexes

    Figure  3  Charge differences (CDs) of atoms in the HBs

    Figure  4  Calculated infrared spectra of the different complexes

    Figure  5  Bond energies of the HBs in the different complexes

    Table  1  Bond energies of HBs in the different complexes with PBE and PBE-D functional

    Functional Bond energy E/(kJ·mol-1)
    phenol…phenol phenol…benzene phenol…oxydibenzene phenol…quinoline benzoic acid…benzoic acid
    PBE 18.19 15.37 22.08 43.43 77.82
    PBE-D 32.79 28.04 35.00 54.96 87.64
    下载: 导出CSV
  • [1] LARSEN J W, GREEN T K, KOVAC J. The nature of the macromolecular network structure of bituminous coals[J]. J Org Chem, 1985, 50(24):4729-4735. doi: 10.1021/jo00224a014
    [2] LARSEN J W, SHAWVER S. Solvent swelling studies of two low-rank coals[J]. Energy Fuels, 1990, 4(1):74-77. doi: 10.1021/ef00019a013
    [3] XIAO J, ZHAO Y P, FAN X, CAO J P, KANG G J, ZHAO W, WEI X Y. Hydrogen bonding interactions between the organic oxygen/nitrogen monomers of lignite and water molecules:A DFT and AIM study[J]. Fuel Process Technol, 2017, 168:58-64. doi: 10.1016/j.fuproc.2017.09.001
    [4] LI Z K, YAN H L, YAN J C, WANG Z C, LEI Z P, REN S B, SHUI H F. Drying and depolymerization technologies of Zhaotong lignite:A review[J]. Fuel Process Technol, 2019, 186:88-98. doi: 10.1016/j.fuproc.2019.01.002
    [5] LI D, LI W, CHEN H, LI B. The adjustment of hydrogen bonds and its effect on pyrolysis property of coal[J]. Fuel Process Technol, 2004, 85(8/10):815-825. http://www.sciencedirect.com/science/article/pii/S037838200300287X
    [6] LI H J, LI X H, FENG J, LI W Y. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. J Fuel Chem Technol, 2019, 47(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201901001
    [7] HOU R, BAI Z, ZHENG H, FENG Z, YE D, GUO Z, KONG L, BAI J, LI W. Behaviors of hydrogen bonds formed by lignite and aromatic solvents in direct coal liquefaction:Combination analysis of density functional theory and experimental methods[J]. Fuel, 2020, 265:117011. doi: 10.1016/j.fuel.2020.117011
    [8] LEI Z P, WU L, ZHANG Y Q, SHUI H F, WANG Z C, REN S B. Effect of noncovalent bonds on the successive sequential extraction of Xianfeng lignite[J]. Fuel Process Technol, 2013, 111:118-122. doi: 10.1016/j.fuproc.2013.02.004
    [9] LEI Z P, CHENG L L, ZHANG S F, ZHANG Y Q, SHUI H F, REN S B, WANG Z C. Dissolution performance of coals in ionic liquid 1-butyl-3-methyl-imidazolium chloride[J]. Fuel Process Technol, 2015, 129:222-226. doi: 10.1016/j.fuproc.2014.09.021
    [10] CHEN C, GAO J S, YAN Y J. Observation of the type of hydrogen bonds in coal by FT-IR[J]. Energy Fuels, 1998, 12(3):446-449. doi: 10.1021/ef970100z
    [11] PAINTER P C, SOBKOWIAK M, YOUTCHEFF J. FT-IR. study of hydrogen bonding in coal[J]. Fuel, 1987, 66(7):973-978. doi: 10.1016/0016-2361(87)90338-3
    [12] MIURA K, MAE K, HASEGAWA I, CHEN H, KUMANO A, TAMURA K. Estimation of hydrogen bond distributions formed between coal and polar solvents using in situ IR technique[J]. Energy Fuels, 2002, 16(1):23-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_219252
    [13] MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMANO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001, 15(3):599-610. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220071119244056
    [14] HAO P Y, MENG Y J, ZENG F G, YAN T T, XU G B. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectrosc Spect Anal, 2020, 40(3):787-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx202003022
    [15] HUANG X, CHU W, SUN W J, JIANG C F, FENG Y Y, XUE Y. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory[J]. Appl Surf Sci, 2014, 299:162-169. doi: 10.1016/j.apsusc.2014.01.205
    [16] LI G Y, XIE Q A, ZHANG H, GUO R, WANG F, LIANG Y H. Pyrolysis mechanism of metal-ion-exchanged lignite:A combined reactive force field and density functional theory study[J]. Energy Fuels, 2014, 28(8):5373-5381. doi: 10.1021/ef501156b
    [17] LI L, FAN H, HU H. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153:70-77. doi: 10.1016/j.fuel.2015.02.088
    [18] LI G Y, WANG F, WANG J P, LI Y Y, LI A Q, LIANG Y H. ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite[J]. Fuel, 2016, 181:238-247. doi: 10.1016/j.fuel.2016.04.068
    [19] LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016, 178:85-92. doi: 10.1016/j.fuel.2016.03.045
    [20] WU J, LIU J, YUAN S, WANG Z, ZHOU J, CEN K. Theoretical investigation of noncovalent interactions between low-rank coal and water[J]. Energy Fuels, 2016, 30(9):7118-7124. doi: 10.1021/acs.energyfuels.6b01377
    [21] LI L, FAN H, HU H. Distribution of hydroxyl group in coal structure:A theoretical investigation[J]. Fuel, 2017, 189:195-202. doi: 10.1016/j.fuel.2016.10.091
    [22] SUN T, WANG Y B. Calculation of the binding energies of different types of hydrogen bonds using GGA density functional and its long-range, empirical dispersion correction methods[J]. Acta Phys-Chim Sin, 2011, 27(11):2553-2558. doi: 10.3866/PKU.WHXB20111017
    [23] JANESKO B G. Modeling interactions between lignocellulose and ionic liquids using DFT-D[J]. Phys Chem Chem Phys, 2011, 13(23):11393-11401. doi: 10.1039/c1cp20072k
    [24] JOSA D, RODRÍGUEZ-OTERO J, CABALEIRO-LAGO E M, RELLÁN-PIÑEIRO M. Analysis of the performance of DFT-D, M05-2X and M06-2X functionals for studying π-π interactions[J]. Chem Phys Lett, 2013, 557:170-175. doi: 10.1016/j.cplett.2012.12.017
    [25] LI B, LIU S, GUO J, ZHANG L. Interaction between low rank coal and kaolinite particles:A DFT simulation[J]. Appl Surf Sci, 2018, 456:215-220. doi: 10.1016/j.apsusc.2018.06.121
    [26] LI Z K, ZONG Z M, YAN H L, WANG Y G, WEI X Y, SHI D L, ZHAO Y P, ZHAO C L, YANG Z S, FAN X. Alkanolysis simulation of lignite-related model compounds using density functional theory[J]. Fuel, 2014, 120:158-162. doi: 10.1016/j.fuel.2013.12.009
    [27] ZHANG R, XING Y, XIA Y, LUO J, TAN J, RONG G, GUI X. New insight into surface wetting of coal with varying coalification degree:An experimental and molecular dynamics simulation study[J]. Appl Surf Sci, 2020, 511:145610. doi: 10.1016/j.apsusc.2020.145610
    [28] STEINER T. The hydrogen bond in the solid state[J]. Angew Chem Int Ed, 2002, 41:48-76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
    [29] LIU F J, WEI X Y, GUI J, WANG Y G, LI P, ZONG Z M. Characterization of biomarkers and structural features of condensed aromatics in Xianfeng lignite[J]. Energy Fuels, 2013, 27(12):7369-7378. doi: 10.1021/ef402027g
    [30] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153:176-182. doi: 10.1016/j.fuel.2015.02.117
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  35
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-09-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回