留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种暴露CeO2{100}晶面的铈钛复合氧化物合成及其负载Au催化剂一氧化碳低温氧化性能研究

张茜 吴志伟 朱华青 李诗颖 秦张峰 樊卫斌 王建国

张茜, 吴志伟, 朱华青, 李诗颖, 秦张峰, 樊卫斌, 王建国. 一种暴露CeO2{100}晶面的铈钛复合氧化物合成及其负载Au催化剂一氧化碳低温氧化性能研究[J]. 燃料化学学报(中英文), 2017, 45(6): 697-706.
引用本文: 张茜, 吴志伟, 朱华青, 李诗颖, 秦张峰, 樊卫斌, 王建国. 一种暴露CeO2{100}晶面的铈钛复合氧化物合成及其负载Au催化剂一氧化碳低温氧化性能研究[J]. 燃料化学学报(中英文), 2017, 45(6): 697-706.
ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 697-706.
Citation: ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 697-706.

一种暴露CeO2{100}晶面的铈钛复合氧化物合成及其负载Au催化剂一氧化碳低温氧化性能研究

基金项目: 

国家自然科学基金 21403268

中国科学院战略性先导科技专项 XDA07060300

山西省科技攻关项目 MQ2014-10

山西省科技攻关项目 MQ2014-11

详细信息
  • 中图分类号: O643

Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation

Funds: 

the National Natural Science Foundation of China 21403268

Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060300

Shanxi Province Science and Technology Research Project MQ2014-10

Shanxi Province Science and Technology Research Project MQ2014-11

More Information
  • 摘要: 利用水热法制备了一种具有花朵状形貌的铈钛复合氧化物,该复合氧化物主要暴露CeO2{100}晶面。SEM、XRD表征结果表明,花朵状铈钛复合氧化物的形成主要分为两个阶段,即无定型的快速生长及缓慢结晶两个过程;在制备过程中,铈钛比例、KOH浓度、晶化时间和焙烧温度是该形貌形成的主要影响因素。其负载Au催化剂后常温即能实现CO的完全转化;TEM和H2-TPR结果表明,暴露的CeO2{100}晶面以及Au和载体的强相互作用是该催化剂具有高活性的主要原因。
  • 图  1  不同铈钛比例条件下CeTiOx复合氧化物的SEM照片

    (a): Ce0.2Ti0.8O2; (b): Ce0.45Ti0.55O2; (c): Ce0.6Ti0.4O2; (d): Ce0.8Ti0.2O2

    Figure  1  SEM images of CeTiOx composite oxides with different Ce/Ti molar ratio

    图  2  不同铈钛比例下CeTiOx复合氧化物的XRD谱图

    a: TiO2; b: Ce0.2Ti0.8O2; c: Ce0.45Ti0.55O2; d: Ce0.6Ti0.4O2; e: Ce0.8Ti0.2O2; f: CeO2

    Figure  2  XRD patterns of CeTiOx composite oxides with different Ce/Ti molar ratio

    图  3  不同KOH浓度制得的Ce0.45Ti0.55O2复合氧化物的SEM照片和XRD谱图

    (a): 3 mol/L; (b): 6 mol/L; (c): 9 mol/L; (d): 12 mol/L; (e): XRD

    Figure  3  SEM images and XRD patterns of Ce0.45Ti0.55O2 composite oxides with different KOH concentrations

    图  4  不同水热处理时间条件下Ce0.45Ti0.55O2复合氧化物的SEM照片

    (a): 0; (b): 6 h; (c): 12 h; (d): 24 h; (e): 36 h; (f): 48 h

    Figure  4  SEM images of Ce0.45Ti0.55O2 with different hydrothermal treatment time

    图  5  不同焙烧温度条件下Ce0.45Ti0.55O2复合氧化物的SEM、TEM照片和XRD谱图

    (a): 400 ℃; (b): 500 ℃; (c): 600 ℃; (d): 700 ℃; (e): 800 ℃; (f): XRD spectra

    Figure  5  SEM and TEM images and XRD patterns of Ce0.45Ti0.55O2 at different calcination temperature

    图  6  不同形貌Ce0.45Ti0.55O2及其负载Au催化剂的XRD谱图

    a: Ce0.45Ti0.55O2-A; b: Au/Ce0.45Ti0.55O2-A; c: Ce0.45Ti0.55O2-F; d: Au/Ce0.45Ti0.55O2-F

    Figure  6  XRD patterns of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    图  7  不同形貌Ce0.45Ti0.55O2及其负载Au催化剂的TEM和HR-TEM照片

    (a1)、(a2)、(a3): Ce0.45Ti0.55O2-A; (b1)、(b2)、(b3): Au/Ce0.45Ti0.55O2-A; (c1)、(c2)、(c3): Ce0.45Ti0.55O2-F; (d1)、(d2)、(d3): Au/Ce0.45Ti0.55O2

    Figure  7  TEM and HR-TEM images of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    图  8  不同形貌Ce0.45Ti0.55O2载体及其负载Au催化剂的H2-TPR谱图

    a: Ce0.45Ti0.55O2-A; b: Au/Ce0.45Ti0.55O2-A; c: Ce0.45Ti0.55O2-F; d: Au/Ce0.45Ti0.55O2-F

    Figure  8  H2-TPR spectra of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    图  9  不同形貌的Ce0.45Ti0.55O2载体及其负载Au催化剂的CO活性

    a: Ce0.45Ti0.55O2-F; b: Ce0.45Ti0.55O2-A; c: Au/Ce0.45Ti0.55O2-A; d: Au/Ce0.45Ti0.55O2-F

    Figure  9  CO catalytic performance test of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    表  1  不同形貌载体及其负载Au催化剂的氮吸附物理参数和Au负载量

    Table  1  N2 adsorption properties and Au loadings of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    表  2  不同形貌载体及其负载Au催化剂的H2-TPR定量分析

    Table  2  H2-TPR quantitative analysis of Ce0.45Ti0.55O2 with different morphologies and their supported Au catalysts

    表  3  不同CeO2晶面的Au/CeO2催化剂CO催化性能对比

    Table  3  Comparison of catalytic performance of Au/CeO2 catalysts with different CeO2 morphologies and crystal planes reported in recent years

  • [1] SUN Y A, SHEN Y N, JIA M L. Evolution of gold species in an Au/CeO2 catalyst and its impact on activity for CO oxidation[J]. Chem Res Chin Univ, 2010, 26 (3): 453-459.
    [2] HARUTA M, YAMADA N, KOBAYASHI T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115 (2): 301-309. doi: 10.1016/0021-9517(89)90034-1
    [3] HARUTA M, TSUBOTA S, KOBAYASHI T. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993, 144 (1): 175-192. doi: 10.1006/jcat.1993.1322
    [4] PANDIAN L, LAURENT D, VINCENT R. Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment[J]. Appl Catal B: Environ, 2010, 96 (1/2): 117-125.
    [5] MARIA P C, ALESSANDRO L, ANNA M V. Metal-support and preparation influence on the structural and electronic properties of gold catalysts[J]. Appl Catal A: Gen, 2006, 302 (2): 309-316. doi: 10.1016/j.apcata.2006.02.005
    [6] LI Q, ZHANG Y H, CHEN G X. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal, 2010, 273 (2): 167-176. doi: 10.1016/j.jcat.2010.05.008
    [7] LI S H, ZHU H Q, QIN Z F. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014, 144 : 498-506. doi: 10.1016/j.apcatb.2013.07.049
    [8] QIAN K, HUANG W X, JIANG Z Q. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007, 248 (1): 137-141. doi: 10.1016/j.jcat.2007.02.010
    [9] WANG Z H, FU H F, TIAN Z W. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation[J]. Nanoscale, 2016, 8 (11): 5865-5872. doi: 10.1039/C5NR06929G
    [10] ALESSANDRO L, LEONARDA F L, GABRIELLA D C. Structure and the metal support interaction of the Au/Mn oxide catalysts[J]. Chem Mater, 2010, 22 (13): 3952-3960. doi: 10.1021/cm100697b
    [11] LIU X J, LIU J F, CHANG Z. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun, 2011, 12 (6): 530-534. doi: 10.1016/j.catcom.2010.11.016
    [12] LIN S J, SUA G J, ZHENG M H. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B: Environ, 2012, 123/124 : 440-447. doi: 10.1016/j.apcatb.2012.05.011
    [13] ZHENG Y H, CHENG Y, WANG Y S. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006, 110 (7): 3093-3097. doi: 10.1021/jp056617q
    [14] XIE X W, LI Y, LIU Z Q. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458 (7239): 746-749. doi: 10.1038/nature07877
    [15] LIU L J, JIANG Y Q, ZHAO H L. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light[J]. ACS Catal, 2016, 6 (2): 1097-1108.
    [16] WANG G H, LI W C, JIA K M. Shape and size controlled alpha-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance[J]. Appl Catal A: Gen, 2009, 364 (1/2): 42-47.
    [17] ZIOLKOWSKI J, BARBAUX Y. Identification of sites active in oxidation of butene to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surface[J]. J Mol Catal, 1991, 67 (2): 199-215. doi: 10.1016/0304-5102(91)85047-6
    [18] TTHX T S, FRANCESCO C, ZHANG X Q. Structure-activity map of ceria nanoparticles, nanocubes, and mesoporous architectures[J]. Chem Mater, 2016, 28 (20): 7287-7295. doi: 10.1021/acs.chemmater.6b02536
    [19] HAUNG W X. Oxide nanocrystal model catalysts[J]. Acc Chem Res, 2016, 49 (3): 520-527. doi: 10.1021/acs.accounts.5b00537
    [20] TA N, LIU J Y, SANTHOSH C. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc, 2012, 134 (51): 20585-20588. doi: 10.1021/ja310341j
    [21] TIZIANO M, MICHELE M, MATTEO M. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016, 116 (10): 5987-6041. doi: 10.1021/acs.chemrev.5b00603
    [22] HU Z, LIU X F, MENG D M. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. Acs Catal, 2016, 6 (4): 2265-2279. doi: 10.1021/acscatal.5b02617
    [23] SUN C W, LI H, CHEN L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids, 2007, 68 (9): 1785-1790. doi: 10.1016/j.jpcs.2007.05.005
    [24] LIU W, FENG L U, ZHANG C. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J]. J Mater Chem A, 2013, 1 (23): 6942-6948. doi: 10.1039/c3ta10487g
    [25] ZHOU K B, WANG X, SUN X M. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005, 229 (1): 206-212. doi: 10.1016/j.jcat.2004.11.004
    [26] MAI H X, SUN L D, ZHANG Y W. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005, 109 (51): 24380-24385. doi: 10.1021/jp055584b
    [27] SUN C W, SUN J, XIAO G L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2007, 110 (27): 13445-13452. http://www.irgrid.ac.cn/handle/1471x/794192
    [28] PUTLA S, BAITHY M, PADIGAPATI S R. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B: Environ, 2014, 144 : 900-908. doi: 10.1016/j.apcatb.2013.08.035
    [29] PENN R L. Kinetics of oriented aggregation[J]. J Phys Chem B, 2004, 108 (34): 12707-12712. doi: 10.1021/jp036490+
    [30] CHEN Y, WANG Y S, ZHEGN Y H. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J]. J Phys Chem B, 2005, 109 (23): 11548-11551. doi: 10.1021/jp050641m
    [31] HUANG X S, SUN H, WANG L C. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ, 2009, 90 (1/2): 224-232. http://www.sciencedirect.com/science/article/pii/S0926337309001039
    [32] ZHONG L S, HU J S, CAO A M. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007, 19 (7): 1648-1655. doi: 10.1021/cm062471b
    [33] QI J, CHEN J, LI G D. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy Environ Sci, 2012, 5 (10): 8937. doi: 10.1039/c2ee22600f
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  55
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-24
  • 修回日期:  2017-04-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回