留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性

刘优昌 王亮

刘优昌, 王亮. g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性[J]. 燃料化学学报(中英文), 2018, 46(9): 1146-1152.
引用本文: 刘优昌, 王亮. g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性[J]. 燃料化学学报(中英文), 2018, 46(9): 1146-1152.
LIU You-chang, WANG Liang. Preparation of p-n heterojunction g-C3N4/BiOBr and its photocatalytic performance under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1146-1152.
Citation: LIU You-chang, WANG Liang. Preparation of p-n heterojunction g-C3N4/BiOBr and its photocatalytic performance under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1146-1152.

g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性

详细信息
  • 中图分类号: TQ426.9

Preparation of p-n heterojunction g-C3N4/BiOBr and its photocatalytic performance under visible light

More Information
  • 摘要: 以三聚氰胺作为合成g-C3N4纳米片的前躯体,以Bi(NO33·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C3N4/BiOBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C3N4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UV-vis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ>420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C3N4/BiOBr光催化降解罗丹明B(RhB)的效率高于单体g-C3N4和BiOBr,并对g-C3N4/BiOBr增强可见光催化RhB机理进行解释。
  • 图  1  样品的XRD谱图

    Figure  1  XRD patterns of obtained samples

    图  2  样品50%g-C3N4/BiOBr的TEM照片

    Figure  2  TEM images of 50%g-C3N4/BiOBr

    图  3  样品50% g-C3N4/BiOBr的XPS谱图

    Figure  3  XPS patterns of 50% g-C3N4/BiOBr

    (a): survey; (b): C 1s; (c): N 1s; (d): O 1s; (e): Br 3d; (f): Bi 4f

    图  4  样品的PL谱图

    Figure  4  PL spectrum of obtained samples

    图  5  样品的UV-vis DRS谱图

    Figure  5  UV-vis DRS spectra of obtained samples

    图  6  样品对液相RhB的光催化降解效率

    Figure  6  Photocatalytic activity of obtained samples for degradation of RhB under visible light irradiation

    图  7  g-C3N4/BiOBr光催化降解RhB示意图

    Figure  7  Schematic illustration of photocatalytic degradation of RhB with g-C3N4/BiOBr composite

  • [1] JI L, WANG H R, YU R M. Preparation, characterization and visible-light photocatalytic activities of p-n heterojunction BiOBr/NaBiO3 composites[J]. Chem J Chin Univ, 2014, 35(10):2170-2176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201410019
    [2] LUAN Y B, FENG Y J, WANG W X, XIE M Z.JING L Q.Synthesis of BiOBr-TiO2 nanocrystalline composite by micro-emulsion-like chemical precipitation method and its photocatalytic activity[J]. Acta Phys Chim Sin, 2013, 29(12):2655-2660. https://www.researchgate.net/publication/263338731_Synthesis_of_BiOBr-TiO2_Nanocrystalline_Composite_by_Microemulsion-Like_Chemical_Precipitation_Method_and_Its_Photocatalytic_Activity
    [3] CAI Q F, SHEN J C, YU F, SHEN Q H, YANG H. Template free preparation and characterization of nanoporous g-C3N4with enhanced visible photocatalytic activity[J]. J Alloys Compd, 2015, 628(15):372-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234656531
    [4] YUAN X, GAO S P. Band gap of C3N4 in the GW approximation[J]. Int J Hydrogen Energy, 2012, 37(15):11072-11080. doi: 10.1016/j.ijhydene.2012.04.138
    [5] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17):10397-10401. doi: 10.1021/la900923z
    [6] SUN Y J, ZHANG W D, XIONG T, ZHAO ZW, FANG D, WANG QR, WING K W. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. J Colloid Interface Sci, 2014, 418:317-323. doi: 10.1016/j.jcis.2013.12.037
    [7] JIANG G D, GENG K, WU Y, HAN Y H, SHEN X D. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation[J]. Appl Cata B:Environ, 2018, 227:366-375. doi: 10.1016/j.apcatb.2018.01.034
    [8] ZHANG S W, LI J X, ZENG M Y, LI J, XU J Z, WANG X K. Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride:C+Fe as an example[J]. Chem Eur J, 2014, 20(31):9805-9812. doi: 10.1002/chem.201400060
    [9] LI Z S, YANG S Y, ZHOU J M, LI D H, ZHOU X F, DE C Y, FANG Y P. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances[J]. Chem Eng J, 2014, 241:344-351. doi: 10.1016/j.cej.2013.10.076
    [10] WANG N N, ZHOU Y, CHEN C H, CHENG L Y, DING H Y. Ag-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light[J]. Catal Commun, 2016, 73:74-79. doi: 10.1016/j.catcom.2015.10.015
    [11] ZHANG D, LI J, WANG Q G, WU Q. High {001} facets dominated BiOBr lamellas:Facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. J Mater Chem A, 2013, 1(30):8622-8629. doi: 10.1039/c3ta11390f
    [12] ZHANG H J, LIU L, ZHOU Z. Towards better photocatalysts:First-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light[J]. Phys Chem Chem Phys, 2012, 14(3):1286-1292. doi: 10.1039/C1CP23516H
    [13] PATIL S P, PATIL R P, MAHAJAN V K, SONAWANE G H, SHRIVASTAVA V S, SONAWANE S. Facile sonochemical synthesis of BiOBr-graphene oxide nanocomposite with enhanced photocatalytic activity for the degradation of direct green[J]. Mater Sci Semicond Process, 2016, 52:55-61. doi: 10.1016/j.mssp.2016.05.008
    [14] LI X, DONG C, WU KL, SHAN H X, YU H, LING M, LIU K, LU X L, YE Y, WEI X W. Synthesis of nitrogen-doped graphene-BiOBr nanocomposites with enhanced visible light photocatalytic activity[J]. Mater Lett, 2016, 164:502-504. doi: 10.1016/j.matlet.2015.10.128
    [15] JIANG T T, LI J L, SUN Z, LIU X J, LU T, RAN L K. Reduced graphene oxide as co-catalyst for enhanced visible light photocatalytic activity of BiOBr[J]. Ceram Int, 2016, 42:16463-16468. doi: 10.1016/j.ceramint.2016.06.079
    [16] LI N, WANG M, ZHAO B P, CAO X L. g-C3N4-BiOBr composites:Synthesis and high photocatalytic performance under visible-light irradiation[J]. Chin J Inorg Chem, 2016, 32(6):1033-1040. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201606014
    [17] 蔡奇风. g-C3N4/BiOBr复合光催化材料制备及性能研究[D]. 杭州: 浙江大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2788391

    CAI Q F. Preparation and properties of g-C3N4/BiOBr composite photocatalyst[D]. Hangzhou: Zhejiang University, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2788391
    [18] ZHANG X M, CHANG X F, GONDAL M A, ZHANG B, LIU Y S, JI G B.Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light[J]. Appl Surf Sci, 2012, 258:7826-7832. doi: 10.1016/j.apsusc.2012.04.049
    [19] YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017, 396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219
    [20] YU X, WU P W, SHI J J, FENG L J, LI C H, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloy Compd, 2017, 729:162-170. doi: 10.1016/j.jallcom.2017.09.175
    [21] 张文东. BiOBr和g-C3N4的制备、表征及可见光催化氧化罗丹明B性能研究[D]. 重庆: 重庆大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10611-1015971124.htm

    ZHANG W D. Preparation, characteration and visible light pthocatalytic oxidation performance of BiOBr and g-C3N4 in rhodamine B[D]. Chongqing: Chongqing University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10611-1015971124.htm
    [22] JIANG Z, YANG F, YANG G D, KONG L, JONES M O, XIAO T C, EDWARDS P P. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J Photochem Photobiol A:Chem, 2010, 212(1):8-13. doi: 10.1016/j.jphotochem.2010.03.004
  • 加载中
图(8)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  45
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-07-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回