留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备方法对Ni2P/SiO2催化剂结构及萘加氢性能的影响

荆洁颖 杨志奋 王九占 刘道诚 冯杰 李文英

荆洁颖, 杨志奋, 王九占, 刘道诚, 冯杰, 李文英. 制备方法对Ni2P/SiO2催化剂结构及萘加氢性能的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 842-851.
引用本文: 荆洁颖, 杨志奋, 王九占, 刘道诚, 冯杰, 李文英. 制备方法对Ni2P/SiO2催化剂结构及萘加氢性能的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 842-851.
JING Jie-ying, YANG Zhi-fen, WANG Jiu-zhan, LIU Dao-cheng, FENG Jie, LI Wen-ying. Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 842-851.
Citation: JING Jie-ying, YANG Zhi-fen, WANG Jiu-zhan, LIU Dao-cheng, FENG Jie, LI Wen-ying. Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 842-851.

制备方法对Ni2P/SiO2催化剂结构及萘加氢性能的影响

基金项目: 

国家重点研发计划 2016YFB0600305

国家自然科学基金 21978190

国家自然科学基金 U1610221

详细信息
  • 中图分类号: TQ032

Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst

Funds: 

National Key Research and Development Plan Projects of China 2016YFB0600305

National Natural Science Foundation of China 21978190

National Natural Science Foundation of China U1610221

More Information
  • 摘要: 采用程序升温还原法和次磷酸盐歧化法制备了Ni2P/SiO2催化剂,结合现代仪器分析表征技术,研究了制备方法对Ni2P/SiO2催化剂结构和萘加氢性能的影响。结果表明,两种方法均可制备出仅含Ni2P活性相的Ni2P/SiO2催化剂,在反应温度340℃、氢气压力4 MPa、空速为20.8 h-1下,程序升温还原法制备的Ni2P/SiO2催化剂表现出更高的萘加氢活性,这主要是因为程序还原法制备的Ni2P/SiO2催化剂中有更多Ni2P物种生成,提供了较多的活性位点(CO吸附量21.6 μmol/g);且催化剂表面弱酸位点多,有利于芳烃吸附。当选用程序升温还原法制备Ni2P/SiO2催化剂时,在保证生成纯相Ni2P的前提下,较低的Ni/P比更有利于合成高加氢活性的Ni2P/SiO2催化剂。
  • 图  1  Ni2P/SiO2催化剂制备原理示意图

    Figure  1  Preparation principle of Ni2P/SiO2 catalysts

    (a): catalysts prepared by temperature-programmed reduction; (b): catalyst prepared by hypophosphite disproportionation method

    图  2  不同制备方法中P物种迁移路径示意图

    Figure  2  P species migration path in different preparation methods

    图  3  反应前后不同制备方法所得Ni2P/SiO2催化剂的XRD谱图

    Figure  3  XRD patterns of Ni2P/SiO2 catalysts prepared by different preparation methods before and after reaction

    图  4  不同制备方法所得Ni2P/SiO2催化剂前驱体的H2-TPR谱图

    Figure  4  H2-TPR profiles of Ni2P/SiO2 catalysts prepared by different preparation methods

    图  5  不同制备方法所得Ni2P/SiO2催化剂的形貌及其粒径分布

    Figure  5  Morphologies and particle size distribution of Ni2P/SiO2 catalysts prepared by different methods

    图  6  不同制备方法所得Ni2P/SiO2催化剂的NH3-TPD谱图

    Figure  6  NH3-TPD profiles of Ni2P/SiO2 catalysts prepared by different methods

    图  7  不同制备方法所得Ni2P/SiO2催化剂中Ni 2p和P 2p的XPS谱图

    Figure  7  XPS profiles of Ni 2p and P 2p on Ni2P/SiO2 catalysts prepared by different methods

    图  8  不同制备方法所得Ni2P/SiO2催化剂的萘加氢性能

    Figure  8  Naphthalene hydrogenation performance of Ni2P/SiO2 catalysts prepared by different methods

    表  1  不同制备方法Ni2P/SiO2催化剂的元素组成

    Table  1  Element composition of Ni2P/SiO2 catalysts synthesized by different methods

    Sample Theory content Actual content
    Ni w/% P w/% Ni/P (mol ratio) Ni w/% P w/% Ni/P (mol ratio)
    Cat-D 7.9 8.4 0.5 7.9 5.0 0.8
    Cat-T(1) 7.9 4.2 1 8.1 2.5 1.7
    Cat-T(1.25) 7.9 3.3 1.25 8.3 3.0 1.4
    下载: 导出CSV

    表  2  不同制备方法催化剂的比表面积和孔结构

    Table  2  BET specific surface area and pore structure of the Ni2P/SiO2 catalyst synthesized by different methods

    Sample BET specific
    surface area
    A/(m2·g-1)
    Total pore
    volume
    v/(cm3·g-1)
    Most probable
    aperture
    d/nm
    SiO2 209.0 2.1 32.8
    Cat-D 146.8 0.5 12.5
    Cat-T(1) 145.3 0.7 20.1
    Cat-T(1.25) 149.5 0.8 22.3
    下载: 导出CSV

    表  3  不同制备方法所得Ni2P/SiO2催化剂中Ni 2p、P 2p的结合能和Ni/P比

    Table  3  Binding energy of Ni 2p and P 2p, the atomic ratio of Ni/P on Ni2P/SiO2 catalysts prepared by different methods

    Sample Binding energy E/ eV Ni/P
    /(mol ratio)
    Ni 2p3/2 P 2p3/2
    Niδ+ Ni2+ Pδ- PO43-
    Cat-D 853.42 857.36 129.29 133.84 0.99
    Cat-T(1) 853.35 857.26 129.39 133.89 1.05
    Cat-T(1.5) 853.31 857.05 129.41 133.84 1.52
    下载: 导出CSV
  • [1] CORMA A, MARTÍNEZ A, MARTÍNEZ-SORIA V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts[J]. J Catal, 1997, 169(2):480-489. https://www.sciencedirect.com/science/article/pii/S0021951797917371
    [2] STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis:A review[J]. Catal Rev, 2006, 36(1):75-123. doi: 10.1080/01614949408013921
    [3] 夏良燕, 夏芝香, 方梦祥, 唐巍, 王勤辉, 骆仲泱.煤焦油中芳烃(萘)的加氢饱和试验[J].浙江大学学报(工学版), 2015, 49(3):578-584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201503025

    XIA Liang-yan, XIA Zhi-xiang, FANG Meng-xiang, TANG Wei, WANG Qin-hui, LUO Zhong-yang. Hydrogenation saturation of aromatic compounds (naphthalene) in coal tar[J]. J Zhejiang Univ (Eng Sci)), 2015, 49(3):578-584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201503025
    [4] 佟瑞利, 王永刚, 张旭, 张海永, 戴谨泽, 林雄超, 许德平. P改性NiW/γ-Al2O3的低温焦油芳烃组分加氢性能研究[J].燃料化学学报, 2015, 43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009

    TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol, 2015, 43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009
    [5] HE T, WANG Y, MIAO P, LI J, WU J, FANG Y. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur[J]. Fuel, 2013, 106:365-371. doi: 10.1016/j.fuel.2012.12.025
    [6] 李贺, 殷长龙, 赵雪萍, 李秀峥, 柳云骐, 刘晨光.萘、四氢萘和十氢萘的加氢或脱氢反应与催化剂的研究进展[J].石油化工, 2014, 23(8):971-979. doi: 10.3969/j.issn.1000-8144.2014.08.020

    LI He, YIN Chang-long, ZHAO Xue-ping, LI Xiu-zheng, LIU Yun-ji, LIU Chen-guang. Progresses in hydrogenation or dehydrogenation of naphthalene, tetralin and decalin, and the catalysts[J]. Petrochem Technol, 2014, 23(8):971-979. doi: 10.3969/j.issn.1000-8144.2014.08.020
    [7] LIU D, WANG A, LIU C, PRINS R. Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources[J]. Catal Commun, 2016, 77:13-17. doi: 10.1016/j.catcom.2016.01.008
    [8] YUN G, GUAN Q, LI W. The synthesis and mechanistic studies of a highly active nickel phosphide catalyst for naphthalene hydrodearomatization[J]. RSC Adv, 2017, 7(14):8677-8687. doi: 10.1039/C7RA00250E
    [9] YANG Y, LI J, LV G, ZHANG L. Novel method to synthesize Ni2P/SBA-15 adsorbents for the adsorptive desulfurization of model diesel fuel[J]. J Alloy Compd, 2018, 745:467-476. doi: 10.1016/j.jallcom.2018.02.156
    [10] D'AQUINO A I, DANFORTH S J, CLINKINGBEARD T R, ILIC B, PULLAN L, REYNOLDS M A, MURRAY B D, BUSSELL M E. Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors[J]. J Catal, 2016, 335:204-214. doi: 10.1016/j.jcat.2015.12.006
    [11] LI X, FENG J, GUO J, WANG A, PRINS R, DUAN X, CHEN Y. Preparation of Ni2P/Al2O3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio[J]. J Catal, 2016, 334:116-119. doi: 10.1016/j.jcat.2015.11.007
    [12] LI J, CHAI Y, LIU B, WU Y, LI X, TANG Z, LIU Y, LIU C. The catalytic performance of Ni2P/Al2O3 catalyst in comparison with Ni/Al2O3 catalyst in dehydrogenation of cyclohexane[J]. Appl Catal A:Gen, 2014, 469:434-441. doi: 10.1016/j.apcata.2013.09.047
    [13] SONG H, DAI M, GUO Y T, ZHANG Y J. Preparation of composite TiO2-Al2O3 supported nickel phosphide hydrotreating catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Fuel Process Technol, 2012, 96:228-236. doi: 10.1016/j.fuproc.2012.01.001
    [14] WANG S, WANG K, WANG X. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance[J]. Appl Surf Sci, 2016, 386:442-450. doi: 10.1016/j.apsusc.2016.06.055
    [15] LAN X, HENSEN E J M, WEBER T. Silica-supported Ni2P:Effect of preparation conditions on structure and catalytic performance in thiophene hydrodesulfurization (HDS)[J]. Catal Today, 2017, 292:121-132. doi: 10.1016/j.cattod.2016.12.040
    [16] ZHANG X, ZHANG Q, ZHAO A, GUAN J, HE D, HU H, LIANG C. Naphthalene hydrogenation over silica supported nickel phosphide in the absence and presence of N-containing compounds[J]. Energy Fuels, 2010, 24(7):3796-3803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10848dc5c6db284ae5e7b3c1e235b42f
    [17] H DOIRE C E, LOUIS C, DAVIDSON A, BREYSSE M, MAUG F, VRINAT M, H DOIRE C E, LOUIS C, DAVIDSON A, BREYSSE M. Support effect in hydrotreating catalysts:Hydrogenation properties of molybdenum sulfide supported on β-zeolites of various acidities[J]. J Catal, 2003, 220(2):433-441. https://www.sciencedirect.com/science/article/pii/S0021951703003087
    [18] OYAMA S T, WANG X, LEE Y K, CHUN W J. Active phase of Ni2P/SiO2 in hydroprocessing reactions[J]. J Catal, 2004, 221(2):263-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d02b02011f6259ee0fce72460cbef0ad
    [19] HUA S, MIN D, SONG H, XIA W, XU X. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursor of ammonium hypophosphite and nickel chloride at low temperature[J]. Vacuum, 2013, 462-463(27):247-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52ccf707bd8757a5597297c77cd9c953
    [20] LIU D, WANG A, LIU C. Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources[J]. Catal Commun, 2016, 77(5):13-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=412aa624e55137137db3b75efb902e64
    [21] LIU D, WANG A, LIU C, PRINS R. Ni2P/Al2O3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite[J]. Catal Today, 2017, 292(1):133-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd2fb386e39edc491b26d7af984edba9
    [22] CHO K S, SEO H-R, LEE Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization[J]. Catal Commun, 2011, 12(6):0-474. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23c215d18f8a69de8c8394fd30044e9b
    [23] XIE Y, SU H L, QIAN X F, X.M. A mild one-step solvothermal route to metal phosphides (metal=Co, Ni, Cu)[J]. J Solid State Chem, 2000, 149(1):88-91. https://www.sciencedirect.com/science/article/pii/S0022459699984992
    [24] 张子毅, Ni2P/Ce-Al2O3催化剂制备及其萘饱和加氢性能研究[D].太原: 太原理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10112-1018959349.htm

    ZHANG Zi-yi. Preparation of Ni2P/Ce-Al2O3 catalyst and its saturated hydrogenation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10112-1018959349.htm
    [25] 郄志强, Ni2P/Al2O3催化剂的低温制备及其萘加氢饱和性能研究[D].太原: 太原理工大学, 2019.

    QIE Zhi-qiang. Low temperature synthesis of Ni2P/Al2O3 catalyst and its hydrogenation saturation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [26] 郄志强, 张子毅, 荆洁颖, 杨志奋, 冯杰, 李文英. Ni2P负载量对Ni2P/Ce-Al2O3催化剂结构及萘加氢性能的影响[J].燃料化学学报, 2019, 47(6):718-724. doi: 10.3969/j.issn.0253-2409.2019.06.009

    QIE Zhi-qiang, ZHANG Zi-yi, JING Jie-ying, YANG Zhi-fen, FENG Jie, LI Wen-ying, Effect of Ni2P loading on the structure and naphthalene hydrogenation performance of Ni2P/Ce-Al2O3 catalyst[J].J Fuel Chem Technol, 2019, 47(6):718-724. doi: 10.3969/j.issn.0253-2409.2019.06.009
    [27] OYAMA S T, WANG X, LEE Y K, BANDO K, REQUEJO F G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002, 210(1):207-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f07149cfa7b1d89fff3478c746e22cc5
    [28] SAWHILL S J, LAYMAN K A, WYK D R V, ENGELHARD M H, BUSSELL M E. Thiophene hydrodesulfurization over nickel phosphide catalysts:Effect of the precursor composition and support[J]. J Catal, 2005, 231(2):300-313. https://www.academia.edu/4182673/Thiophene_hydrodesulfurization_over_nickel_phosphide_catalysts_effect_of_the_precursor_composition_and_support
    [29] HUO J, JING J, LI W. Reduction time effect on structure and performance of Ni-Co/MgO catalyst for carbon dioxide reforming of methane[J]. Int J Hydrogen Energy, 2014, 39(36):21015-21023. doi: 10.1016/j.ijhydene.2014.10.086
    [30] OYAMA S T, GOTT T, ZHAO H, LEE Y-K. Transition metal phosphide hydroprocessing catalysts:A review[J]. Catal. Today, 2009, 143(1/2):94-107. https://www.sciencedirect.com/science/article/pii/S0920586108004446
    [31] ZHU T, SONG H, DAI X, SONG H. Preparation of Ni2P/Al-SBA-15 catalyst and its performance for benzofuran hydrodeoxygenation[J]. Chin J Chem Eng, 2017, 25:1784-1790. doi: 10.1016/j.cjche.2017.03.027
    [32] NARANOV E R, SADOVNIKOV A A, MAXIMOV A L. Development of micro-mesoporous materials with lamellar structure as the support of NiW catalysts[J]. Microporous Mesoporous Mater, 2018, 263:150-157. doi: 10.1016/j.micromeso.2017.12.021
    [33] SONG H, DAI M, SONG H, WAN X, XU X. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursor of ammonium hypophosphite and nickel chloride at low temperature[J]. Appl Catal A:Gen, 2013, 462-463:247-255. doi: 10.1016/j.apcata.2013.05.015
    [34] SONG H, WANG J, WANG Z, SONG H, LI F, JIN Z. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst[J]. J Catal, 2014, 311:257-265. doi: 10.1016/j.jcat.2013.11.021
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  29
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-07-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回