留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钨、钼、镍含量的改变对体相催化剂物化性质、加氢活性影响

王海涛 徐学军 王继锋 刘东香 冯小萍

王海涛, 徐学军, 王继锋, 刘东香, 冯小萍. 钨、钼、镍含量的改变对体相催化剂物化性质、加氢活性影响[J]. 燃料化学学报(中英文), 2018, 46(3): 337-345.
引用本文: 王海涛, 徐学军, 王继锋, 刘东香, 冯小萍. 钨、钼、镍含量的改变对体相催化剂物化性质、加氢活性影响[J]. 燃料化学学报(中英文), 2018, 46(3): 337-345.
WANG Hai-tao, XU Xue-jun, WANG Ji-feng, LIU Dong-xiang, FENG Xiao-ping. Effects of tungsten, molybdenum and nickel content chang on physicochemical properties and hydrogenation activity of bulk catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 337-345.
Citation: WANG Hai-tao, XU Xue-jun, WANG Ji-feng, LIU Dong-xiang, FENG Xiao-ping. Effects of tungsten, molybdenum and nickel content chang on physicochemical properties and hydrogenation activity of bulk catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 337-345.

钨、钼、镍含量的改变对体相催化剂物化性质、加氢活性影响

基金项目: 

中国石油化工集团公司项目 114083

详细信息
    通讯作者:

    WANG Hai-tao, Tel: 024-56389373,E-mail: wanghaitao.fshy@sinopec.com

  • 中图分类号: TE624.93

Effects of tungsten, molybdenum and nickel content chang on physicochemical properties and hydrogenation activity of bulk catalysts

Funds: 

The project was supported by China Petrochemical Corporation (Sinopec Group) 114083

  • 摘要: 制备不同活性金属原子比的体相催化剂,通过BET、XRD、SEM、TEM、强度测定、堆积密度测定及小型活性评价手段,考察了活性金属钨、钼、镍含量的变化对体相催化剂物化性质和活性的影响。结果表明,保持W/Mo原子比不变,随着(W+Mo)/Ni的原子比减小,孔体积、比表面积、孔径增大,超深度加氢脱硫活性增强,在精制油硫含量小于10 μg/g,反应温度降低8 ℃。在(W+Mo)/Ni的原子比不变的条件下,W/Mo的原子比在0.28-1.85,随着原子比增大,孔体积、比表面积、超深度加氢脱硫活性没有明显变化。
  • 图  1  不同λ1体相催化剂的孔径分布

    Figure  1  BET pore size distribution curves of different (W+Mo)/Ni bulk catalysts

    图  2  不同λ1体相催化剂的XRD谱图

    Figure  2  XRD pattern of different (W+Mo)/Ni bulk catalysts

    图  3  不同λ1体相催化剂的SEM照片

    Figure  3  SEM images of different (W+Mo)/Ni bulk catalysts

    图  4  不同第ⅥB族金属与第Ⅷ族金属原子比的硫化态催化剂TEM照片

    Figure  4  TEM images of different (W+Mo)/Ni sulfurized bulk catalysts

    图  5  不同λ2体相催化剂的孔径分布

    a: YP-λ2-0.28;b: YP-λ2-0.60;c: YP-λ2-1.35;d: YP-λ2-1.85;e: YP-λ2-2.05

    Figure  5  BET pore size distribution curves of different W/Mo bulk catalysts

    图  6  不同λ2体相催化剂的XRD谱图

    a: YP-λ2-0.28;b: YP-λ2-0.60;c: YP-λ2-1.35;d: YP-λ2-1.85

    Figure  6  XRD patterns of different W/Mo bulk catalysts

    图  7  不同λ2催化剂扫描电子显微镜(SEM)照片

    Figure  7  SEM images of different W/Mo bulk catalysts

    图  8  不同λ2硫化态催化剂透射电子显微镜(TEM)照片

    Figure  8  TEM images of different W/Mo bulk catalysts

    表  1  不同第ⅥB族金属与第Ⅷ族金属原子比(λ1 )体相催化剂的物化性质

    Table  1  Physic-chemical properties of different (W+Mo)/Ni bulk catalysts

    Catalyst YP-λ1-0.42 YP-λ1-0.60 YP-λ1-0.90 YP-λ1-1.20 YP-λ1-1.45 YP-λ1-1.65 YP-λ1-1.90
    λ1 0.42 0.60 0.90 1.20 1.45 1.65 1.90
    NiO/% 38 30 24 18 15 12.3 9
    vP/(cm3·g-1) 0.385 0.350 0.299 0.271 0.250 0.235 0.186
    ABET/(m2·g-1) 223 208 195 184 168 151 125
    dP/nm 7.0 6.5 6.1 5.6 4.8 4.3 3.5
    Stack density ρ/(g·cm-3) 0.80 0.86 0.93 1.05 1.20 1.26 1.38
    Crush strength/(N·mm-1) 7.0 9.7 14.5 16.2 17.2 19.5 20.8
    下载: 导出CSV

    表  2  不同λ1催化剂WS2/MoS2片层平均长度和平均堆叠层数

    Table  2  Average slab layers and slab length of different (W+Mo)/Ni sulfurized bulk catalysts

    Catalyst Slab layers N Slab length L/nm
    YP-λ1-0.60 5.71 7.99
    YP-λ1-0.90 5.62 7.88
    YP-λ1-1.20 4.19 7.90
    YP-λ1-1.45 3.59 7.91
    下载: 导出CSV

    表  3  不同λ1体相催化剂镇海常三线柴油的对比

    Table  3  Catalyst activity evaluation of different (W+Mo)/Ni bulk catalysts

    Catalyst YP-λ1-0.90 YP-λ1-1.20 YP-λ1-1.45
    Reaction temperature t/℃ base base +5 base +8
    Properties of feedstock and refined oil material refining oil refining oil refining oil
    Density(20 ℃) ρ/(g·cm-3) 0.859 6 0.830 3 0.829 6 0.830 0
    Boiling range (ASTM-D86) t/℃(IBP-EBP) 202-373 181-373 156-373 166-373
    w(S)/(μg·g-1) 14 424 8.5 9.2 9.0
    w(N)/(μg·g-1) 389 1.0 1.0 1.0
    w(aromatic hydrocarbons)/% 37 11.9 11.6 11.7
    w(polycyclic aromatic hydrocarbons)/% 20.5 2.0 1.8 1.8
    Cetane number 50.8 55.9 55.2 55.4
    下载: 导出CSV

    表  4  不同λ2体相催化剂的物化性质

    Table  4  Physic-chemical properties of different W/Mo bulk catalyst

    Catalyst YP-λ2-0.28 YP-λ2-0.60 YP-λ2-1.35 YP-λ2-1.85 YP-λ2-2.05
    λ2 0.28 0.60 1.35 1.85 2.05
    vP/(cm3·g-1) 0.284 0.276 0.278 0.285 0.346
    ABET/(m2·g-1) 182 175 181 185 218
    dP/nm 5.7 5.6 5.7 5.8 7.5
    Stack density ρ/(g·cm-3) 1.03 1.04 1.05 1.03 0.79
    Crush strength/(N·mm-1) 14.3 15.1 14.8 14.2 7.2
    下载: 导出CSV

    表  5  不同λ2硫化态催化剂WS2/MoS2片层平均长度和平均堆叠层数

    Table  5  Average slab layer and slab length of different W/Mo sulfurized bulk catalysts

    Catalyst Slab layers N Slab length L/nm
    YP-λ2-0.28 5.58 7.91
    YP-λ2-0.60 5.62 7.95
    YP-λ2-1.35 5.64 7.99
    YP-λ2-1.85 5.61 7.93
    下载: 导出CSV

    表  6  不同λ2体相催化剂的加氢活性评价

    Table  6  Catalyst activity evaluation of different W/Mo bulk catalysts

    Catalyst YP-λ2-0.28 YP-λ2-0.60 YP-λ2-1.35 YP-λ2-1.85
    Reaction temperature t/℃ base base base base
    Properties of feedstock and refined oil material refining oil refining oil refining oil refining oil
    Density(20 ℃) ρ/(g·cm-3) 0.866 6 0.838 1 0.838 9 0.838 7 0.838 9
    Boiling range (ASTM-D86) t/℃(IBP-EBP) 194-365 176-360 176-359 177-359 176-360
    w(S)/(μg·g-1) 13 000 7.7 7.5 7.8 8.0
    w(N)/(μg·g-1) 631 1.0 1.0 1.0 1.0
    w(aromatic hydrocarbons)/% 25.2 16.6 16.5 16.7 16.4
    w(polycyclic aromatic hydrocarbons)/% 13.6 3.1 3.1 3.0 3.0
    Cetane number 44.5 51.4 51.2 51.3 51.2
    下载: 导出CSV
  • [1] HUIRACHE-ACUNA R, ALONSO-NUNEZ G, PARAGUAY-DELGELGADO ARAGUAY F, LARA-ROMERO J, BERHAULT G, RIUVERA-MUNOZ E M. Unsupported trimetallic CoMoW sulfide HDS catalysts prepared by in situ decomposition of sulfur-containing precursors[J]. Catal Today, 2015, 250(7):28-37. https://www.sciencedirect.com/science/article/pii/S0920586114004969
    [2] NAVA H, PEDRAZA F, ALONSO G. Ni-Mo-W sulfide catalysts prepared by in situ activation of tri-metallic alkylthiomolybdotungstates[J]. Catal Lett, 2005(1/2), 99:65-71. doi: 10.1007/s10562-004-0777-1
    [3] 李灿, 蒋宗轩, 王璐. 用于柴油加氢脱硫的本体多金属及其制法和应用: 中国, 101153228[P]. 2008-04-02.

    LI Chan, JIANG Zong-xuan, WANG Lu. The preparation and application of bulk metal for diesel hydrodesulfurization: CN, 10115322[P]. 2008-04-02.
    [4] EIJSBOUTS S, MAYO S W, FUJITA F. Unsupported transition metal sulfide catalysts:from fundamentals to industrial application[J]. Appl Catal A:Gen, 2007, 322(4):58-66. https://www.sciencedirect.com/science/article/pii/S0926860X07000087
    [5] 王海涛, 徐学军, 刘东香, 冯小萍, 陈光, 王继峰. FTX体相柴油超深度加氢脱硫催化剂的研制[J].工业催化, 2012, 20(6):32-35. http://d.wanfangdata.com.cn/Periodical_gych201206007.aspx

    WANG Hai-tao, XU Xue-jun, LIU Dong-xiang, FENG Xiao-ping, CHEN Guang, WANG Ji-feng. Preparation of high active bulk catalyst for hydrorefining[J]. Ind Catal, 2012, 20(6):32-35. http://d.wanfangdata.com.cn/Periodical_gych201206007.aspx
    [6] WANG L, ZHANG Y N, ZHANG Y L, JIANG Z X, LI C. Ultra-deep hydrodesulfurization of diesel fuels on trimetallic NiMoW sulfide catalysts[J]. Chem Eur J, 2009, 15(16):12571-12575. http://cat.inist.fr/?aModele=afficheN&cpsidt=22185261
    [7] WANG L, ZHANGY N, ZHANG Y L, LIU P, HAN H X, YANG, M, JIANG Z X, LI C. Hydrodesulfurization of 4, 6-DMDBT on a multi-metallic sulfide catalyst with layered structure[J]. Appl CatalA:Gen, 2011, 394(1/2):18-24. https://www.sciencedirect.com/science/article/pii/S0926860X10008100
    [8] LICEA Y E, GRAU-CRESPOR, PALACIOL P, JR FARO A C. Unsupported trimetallic Ni(Co)-Mo-W sulphide catalysts prepared from mixed oxides:Characterisation and catalytic tests for simultaneous tetralin HDA and dibenzothiophene HDS reactions[J]. Catal Today, 2017, 292(9):84-86
    [9] 周桦, 王海涛, 徐学军. FTX催化剂在柴油加氢精制装置上的工业应用[J].炼油技术与工程, 2016, 46(4):47-50. http://d.wanfangdata.com.cn/Periodical_lysj201208012.aspx

    ZHOU Hua, WANG Hai-tao, XU Xue-jun. The commercial application FTX catalyst in diesel hydrotreating unit[J]. Petrol Refin Eng, 2016, 46(4):47-50. http://d.wanfangdata.com.cn/Periodical_lysj201208012.aspx
    [10] SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1/4):211-263. https://www.sciencedirect.com/science/article/pii/S0920586103004127
    [11] ZHANG B S, YI Y J, ZHANG W, LIANG C H, SU D S, Electron microscopy investigation of the microstructure of unsupported Ni-Mo-W sulfide[J]. Mater Charact, 2011, 62(7):684-690. doi: 10.1016/j.matchar.2011.04.022
    [12] JENNIFER HEIN, LIVER Y GUTIERREZ, EVA SCHACHTL, XU P H, NIGEL D BROWNING, ANDREAS JENTYS, JOHANNES A LERCHER. Distribution of metal cations in Ni-Mo-W sulfide catalysts[J]. ChemCatChem, 2015, 7(22):3692-3704. doi: 10.1002/cctc.201500788
    [13] 孔研, 殷长龙, 柳云琪, 赵瑞玉, 张孔远, 王嘉玮, 刘晨光.非负载型NiMoW加氢催化剂的制备、表征和性能评价[J].石油学报(石油加工), 2012, 28(5):730-738. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201205006.htm

    KONG Yan, YING Chang-long, LIU Yun-qi, ZHAO Rui-yu, ZHANG Kong-yuan, WANG Jia-wei, LIU Chen-guang. Preparation, characterization and catalytic performance of unsupported NiMoW hydrotreating catalyst[J]. Acta Pet Sin (Pet Process Sect), 2012, 28(5):730-738. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201205006.htm
    [14] 曾鹤, 李鹤鸣, 王晨, 施岩, 王海彦.老化成胶和磷改性对非负载型催化剂结构和性能的影响[J].石油化工, 2016, 45(2):181-187. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201207011.htm

    ZENG He, LI He-ming, WANG Chen, SHI Yan, WANG Hai-yan. Effects of aging time, gelling temperature and phosphorus modification on unsupported Ni-Mo catalysts for hydrodesulfurization[J]. Petrochem, Technol, 2016, 45(2):181-187. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201207011.htm
    [15] 邵长丽, 殷长龙, 张俊萍, 陈世安, 刘晨光.尿素反应法制备介孔Ni.Mo复合氧化物[J].无机化学学报, 2008, 24(11):1782-1788. doi: 10.3321/j.issn:1001-4861.2008.11.010

    SHAO Chang-li, YIN Chang-long, ZHANG Jun-ping, CHEN Shi-an, LIU Chen-fuang. Synthesis of mesoporous Ni-Mo mixed oxides with urea method[J]. Chin J Inorg Chem, 2008, 24(11):1782-1788. doi: 10.3321/j.issn:1001-4861.2008.11.010
    [16] 张乐, 龙湘云, 刘学芬, 刘清河, 陈若雷.黏结剂对Ni-Mo-W体相加氢精制催化剂性能的影响[J].石油学报(石油加工), 2012, 28(1):7-14. http://mall.cnki.net/magazine/Article/SXJG201201003.htm

    ZHANG Le, LONG Xiang-yun, LIU Xue-fen, LIU Qing-he, CHEN Ruo-lei. Influence of binders on the properties and performance of Ni-Mo-W bulk hydrotreating catalysts[J]. Acta Pet Sin (Pet Process Sect) 2012, 28(1):7-14. http://mall.cnki.net/magazine/Article/SXJG201201003.htm
    [17] 赵蕾艳, 殷长龙, 李贺, 翟西平, 白振江, 刘晨光. 硅藻土分散的非负载型NiMoW加氢催化剂的研究[C]//第十届全国工业催化技术及应用年会论文集. 太原, 2013: 167-169.

    ZHAO Yan-lei, YIN Chang-long, LI He, ZAI Xi-ping, BAI Zheng-jiang, LIU Chen-guang. Study on dispersion supported non supported NiMoW hydrogenation catalyst for diatomite[C]//Proceedings of the 10th annual meeting of national industrial catalytic technology and Applications. Taiyuan, 2013: 167-169.
    [18] LIU D, LI G.C, LIU L H, LIU C G. Synthesis, characterization and hydrodesulfurization activity of silica-dispersed NiMoW trimetallic catalysts[J]. Nat Gas Chem, 2010, 19(9):530-533. https://www.sciencedirect.com/science/article/pii/S1003995309601080
    [19] 王海涛, 徐学军, 刘东香, 冯小萍.高活性体相加氢精制催化剂的研制[J].现代化工, 2016, 36(11):64-68. http://mall.cnki.net/magazine/Article/SXJG201201003.htm

    WANG Hai-tao, XU Xue-jun, LIU Dong-xiang, FENG Xiao-ping. Preparation of high active bulk catalyst for hydrorefining[J]. Mod Chem Ind, 2016, 36(11):64-68. http://mall.cnki.net/magazine/Article/SXJG201201003.htm
    [20] CHEN Y D, WANG L, LIU X Y, LIU T F, HUANG B K, LI P, JIANG Z X, LI C Hydrodesulfurization of 4, 6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW:Effect of Zn[J]. Appl Catal A:Gen, 2015, 504(9):319-327 https://www.sciencedirect.com/science/article/pii/S0926860X15000642
    [21] CHEN Y D, WANG L, ZHANG Y L, LIU T F, LIU X Y, JIANG Z X, LI C. A new multi-metallic bulk catalyst with high hydrodesulfurization activity of 4, 6-DMDBT prepared using layered hydroxide salts as structural templates[J]. Appl Catal A:Gen, 2014, 474:69-77. doi: 10.1016/j.apcata.2013.09.002
    [22] 殷长龙, 白振江, 赵蕾艳, 张俊萍, 刘晨光.聚乙二醇对非负载型Ni-Mo催化剂结构及加氢脱硫性能的影响[J].化学工程与技术, 2013, 3(6):208-214. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201103010.htm

    YIN Chang-long, BAI Zheng-jiang, ZHAO Lei-yan, ZHANG Jun-ping, LIU Chen-guang. Effect of PEG on the structure and hydrodesulfurization performance of unsupported Ni-Mo catalyst[J]. J Chem Eng Technol, 2013, 3(6):208-214. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201103010.htm
    [23] HUIRACHE ACUNA R, ALONSO NUNEZ G, PARAGUAY DELGADO F, LARA ROMERO J BERHAULT G, RIVERA MUNOZ E M. Unsupported trimetallic CoMoW sulfide HDS catalysts prepared by in situ decomposition of sulfur-containing precursors[J]. Catal Today, 2015, 250(15):28-37. https://www.sciencedirect.com/science/article/pii/S0920586114004969
    [24] LIU D, LI G.C, LIU L H, LIU C G. The synthesis of bulk Ni-Mo-W hydrodesulphurization catalysts with high activity by using methylcellulose[J]. Pet Sci Technol, 2010, 28(14):1485-1491. doi: 10.1080/10916461003627391
    [25] LIU H, LIU Q Z, ZHANG J Z, YIN C L, ZHAO Y X, YIN S M, LIU C G, SUN W F. PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity[J]. Fuel Process Technol, 2017, 160(7):93-101. https://www.sciencedirect.com/science/article/pii/S0378382016310153
    [26] HENSENE J M, KOOYMAN P J, VAN DER MEER Y. VAN DER KRAAN A M, DE BEER V H J, BAN VEEN J A R, V AN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2):224-235. https://www.sciencedirect.com/science/article/pii/S0021951700931580
    [27] CHIANELLI R R, DAAGE M, LEDOUX M J. Fundamental studies of transition-metal sulfide catalytic materials[J]. Adv Catal, 1994, 40:177-232. https://www.sciencedirect.com/science/article/pii/S0360056408606586
    [28] HEIN J, GUTIERREZ L Y, ALBERSBERGERS, HAN J Y, JENTYS A, LERCHER J A. Towards understanding structure-activity relationships of Ni-Mo-W sulfide hydrotreating Catalysts[J]. ChemCatChem, 2017, 9(4):629-641. doi: 10.1002/cctc.v9.4
    [29] BEJ S K, MAITY S K, TURAGA U T. Search for an efficient 4, 6-DMDBT hydrodesulfurization catalyst:A review of recent studies[J]. Energy Fuels, 2004, 18(5):1227-1237. doi: 10.1021/ef030179+
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  65
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 修回日期:  2017-10-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-03-10

目录

    /

    返回文章
    返回