留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO对铜-锰尖晶石脱汞性能的影响机理

杨应举 张艾嘉 刘晶 王震 余颖妮

杨应举, 张艾嘉, 刘晶, 王震, 余颖妮. NO对铜-锰尖晶石脱汞性能的影响机理[J]. 燃料化学学报(中英文), 2020, 48(12): 1461-1465.
引用本文: 杨应举, 张艾嘉, 刘晶, 王震, 余颖妮. NO对铜-锰尖晶石脱汞性能的影响机理[J]. 燃料化学学报(中英文), 2020, 48(12): 1461-1465.
YANG Ying-ju, ZHANG Ai-jia, LIU Jing, WANG Zhen, YU Ying-ni. Effect of NO on the performance of Cu-Mn spinel sorbent in the removal of Hg0 from flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1461-1465.
Citation: YANG Ying-ju, ZHANG Ai-jia, LIU Jing, WANG Zhen, YU Ying-ni. Effect of NO on the performance of Cu-Mn spinel sorbent in the removal of Hg0 from flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1461-1465.

NO对铜-锰尖晶石脱汞性能的影响机理

基金项目: 

国家重点研发计划课题 2016YFB0600604

中国博士后科学基金 2018M640697

详细信息
    通讯作者:

    刘晶, Tel:027-87545526, E-mail:liujing27@mail.hust.edu.cn

  • 中图分类号: TK16

Effect of NO on the performance of Cu-Mn spinel sorbent in the removal of Hg0 from flue gas

Funds: 

the National Key Research and Development Program of China 2016YFB0600604

China Postdoctoral Science Foundation 2018M640697

  • 摘要: 采用实验与量子化学计算相结合的方法研究了烟气中NO对铜-锰尖晶石脱汞性能的影响机理。结果表明,NO在高于250 ℃时抑制铜-锰尖晶石对Hg0的脱除,主要归因于NO与Hg0之间的竞争吸附作用;而在温度低于250 ℃时,NO对铜-锰尖晶石的Hg0脱除性能影响较小。吸附剂表面上吸附的汞主要以Cu-Hg合金和Hg(NO3)2的形式存在。铜-锰尖晶石表面上部分NO被氧化成NO2并与吸附态汞反应形成Hg(NO3)2。吸附剂表面上Cu和Mn原子为NO与Hg0的吸附活性位点,NO的吸附能大于Hg0的吸附能;因此,NO与Hg0之间存在竞争吸附。由于Cu、Mn、N原子之间的强烈轨道杂化作用,NO与铜-锰尖晶石吸附剂表面之间具有较强的相互作用。
  • 图  1  NO对CuMn2O4吸附剂脱汞性能的影响

    Figure  1  Effect of NO on the performance of CuMn2O4 sorbent in the removal of Hg0 from the simulated flue gas consisting of 4% O2, 12% CO2, 3×10-4 NO and N2 as balance gas

    图  2  NO体积分数对CuMn2O4吸附剂脱汞性能的影响

    Figure  2  Effect of NO concentration on the Hg0 removal over the CuMn2O4 sorbent from the simulated flue gas with the composition of 4% O2, 12% CO2, 0-8×10-4 NO and N2 as balance gas

    图  3  吸附剂在4% O2、12% CO2、0和3×10-4 NO、N2作为平衡气体条件下脱汞实验后的程序升温脱附曲线

    Figure  3  Temperature programmed desorption profiles of mercury from the spent CuMn2O4 sorbent after the Hg0 removal test from the flue gas with the composition of 4% O2, 12% CO2, 3×10-4 NO, N2 balance gas

    图  4  NO在CuMn2O4表面上的吸附能和稳定优化结构

    Figure  4  Adsorption energies and optimized structures of NO on the CuMn2O4 surface

    图  5  NO在CuMn2O4表面上稳定吸附结构的原子投影态密度

    Figure  5  Density of states (DOS) of NO adsorption on the CuMn2O4 surface

    (a): DOS of Cu atom during NO adsorption on Cu site; (b): DOS of Mn atom during NO adsorption on Mn site; (c): DOS of N atom during NO adsorption on Cu site; (d): DOS of N atom during NO adsorption on Mn site

  • [1] YANG Y J, LIU J, WANG Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Prog Energy Combust Sci, 2020, 79: 100844.
    [2] ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M, LU J H. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust Sci, 2019, 73: 26-64.
    [3] YANG Y J, MIAO S, LIU J, WANG Z, YU Y N. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environ Sci Technol, 2019, 53(16): 9957-9965.
    [4] YAO T, DUAN Y F, BISSON T M, GUPTA R, PUDASAINEE D, ZHU C, XU Z H. Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal[J]. J Hazard Mater, 2019, 374: 267-275.
    [5] ZHENG Y J, JENSEN A D, WINDELIN C, JENSEN F. Review of technologies for mercury removal from flue gas from cement production processes[J]. Prog Energy Combust Sci, 2012, 38(5): 599-629.
    [6] KANG M, PARK E D, KIM J M, YIE J E. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today, 2006, 111(3): 236-241.
    [7] LIU P, HE H P, WEI G L, LIANG X L, QI F H, TAN F D, TAN W, ZHU J X, ZHU R L. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism[J]. Appl Catal B: Environ, 2016, 182: 476-484.
    [8] YANG Y J, LIU J, WANG Z, LONG Y, DING J Y. Interface reaction activity of recyclable and regenerable Cu-Mn spinel-type sorbent for Hg0 capture from flue gas[J]. Chem Eng J, 2019, 372: 697-707.
    [9] YANG Y J, LIU J, WANG Z, ZHANG Z, DING J Y, YU Y N. Nature of active sites and an oxygen-assisted reaction mechanism for mercury capture by spinel-type CuMn2O4 sorbents[J]. Energy Fuels, 2019, 33(9): 8920-8926.
    [10] YANG Y J, LIU J, LIU F, WANG Z, DING J Y, HUANG H. Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst[J]. Chem Eng J, 2019, 361: 578-587.
    [11] 杨应举, 张保华, 刘晶, 王震, 苗森.可再生循环利用CuxMn(3-x)O4尖晶石吸附剂脱汞性能[J].燃烧科学与技术, 2017, 23(6): 511-515.

    YANG Ying-ju, ZHANG Bao-hua, LIU Jing, WANG Zhen, MIAO Sen. Mercury removal by recyclable and regenerable CuxMn(3-x)O4 spinel-type sorbents[J]. J Combust Sci Technol, 2017, 23(6): 511-515.
    [12] RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M. Mercury compounds characterization by thermal desorption[J]. Talanta, 2013, 114: 318-322.
  • 加载中
图(6)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  60
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-10-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回