留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟烟气气氛下矿物元素组分对砷的吸附特性研究

许豪 张成 袁昌乐 余圣辉 李权 方庆艳 陈刚

许豪, 张成, 袁昌乐, 余圣辉, 李权, 方庆艳, 陈刚. 模拟烟气气氛下矿物元素组分对砷的吸附特性研究[J]. 燃料化学学报(中英文), 2019, 47(7): 876-883.
引用本文: 许豪, 张成, 袁昌乐, 余圣辉, 李权, 方庆艳, 陈刚. 模拟烟气气氛下矿物元素组分对砷的吸附特性研究[J]. 燃料化学学报(中英文), 2019, 47(7): 876-883.
XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883.
Citation: XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883.

模拟烟气气氛下矿物元素组分对砷的吸附特性研究

基金项目: 

国家重点研发计划 2018YFB0605105

详细信息
  • 中图分类号: TQ536.1

Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere

Funds: 

the National Key Research and Development Program of China 2018YFB0605105

More Information
  • 摘要: 利用气相砷吸附反应实验装置,研究了300-900℃条件下CaO、Fe2O3、MgO、Al2O3、K2SO4及钙铁混合吸附剂在模拟烟气气氛下的As2O3(g)吸附特性。结果表明,在五种单元素吸附剂中,CaO的吸附能力最强,K2SO4最弱;随着温度升高,CaO的吸附量先增加,在700℃时略微下降后又增加,Fe2O3的吸附量先增加后减少,MgO、Al2O3、K2SO4的吸附量一直增加;三种比例的钙铁混合吸附剂的吸附效果的实验值相比计算值至少提高了92%,Ca:Fe比为3:1时,吸附效果最好,达到7.91 mg/g。混合后烧结反应导致表面结构改变是吸附效果提升的重要原因。
  • 图  1  气相砷吸附反应实验装置示意图

    Figure  1  Gas phase arsenic adsorption reaction experimental device

    图  2  300-900 ℃下不同吸附剂的固砷量

    Figure  2  Arsenic adsorption amount by different adsorbents from 300 to 900 ℃

    图  3  700 ℃吸附后CaO样品的XRD谱图

    Figure  3  XRD patterns of CaO sample after test at 700 ℃

    图  4  700 ℃吸附后Fe2O3样品的XRD谱图

    Figure  4  XRD patterns of Fe2O3 sample after test at 700 ℃

    图  5  700 ℃下Al2O3样品的XRD谱图

    Figure  5  XRD patterns of Al2O3 sample after test at 700 ℃

    图  6  900 ℃CaO、Fe2O3及不同掺混比下的固砷量

    Figure  6  Arsenic adsorption amount by CaO, Fe2O3 and different blends at 900 ℃

    图  7  900 ℃下吸附剂的SEM照片

    (a): CaO (×5000); (b): Fe2O3 (×2000); (c): Ca:Fe = 1:1 (×2500); (d): Ca:Fe = 1:1 (×10000)

    Figure  7  SEM images of the adsorbent after test at 900 ℃:

    图  8  900 ℃下吸附剂的能谱照片

    (a): adsorbent; (b): iron; (c): calcium; (d): arsenic

    Figure  8  Energy spectrum scan of the adsorbent after test at 900 ℃

    图  9  900 ℃下Ca:Fe=1:1时吸附剂的XRD谱图

    Figure  9  XRD patterns of adsorbent of Ca:Fe=1:1 after test at 900 ℃

    表  1  吸附样品的XRF分析

    Table  1  XRF analysis of adsorbed samples

    XPF analysis /%
    CaO Fe2O3 MgO Al2O3 K2SO4
    CaO 98.82 0.24 0.13 0.12 -
    Fe2O3 0.16 98.69 0.33 0.16 -
    MgO - - 98.21 - -
    Al2O3 - - - 98.196 -
    K2O 0.10 - 0.46 - 58.33
    SO3 0.03 0.510 - 0.62 41.51
    SiO2 0.79 - 0.87 0.60 -
    下载: 导出CSV

    表  2  实验参数

    Table  2  Experimental parameters

    Variables Values
    Sorbent weight m/mg 500
    Sorbent particle size d/mm 0.20-0.30
    Carrier gas flow rate q/(mL·min-1) 1550
    As2O3 concentration α/10-6 120
    Adsorption atmosphere N2:77%,O2:4.8%,CO2:13%,H2O:5.2%
    Adsorption temperature t/℃ 300,500,700,900
    Adsorption time t/min 30
    下载: 导出CSV
  • [1] WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologiesJ]. Prog Energy Combust, 2018, 68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [2] 康彧.煤矿区中砷的环境生物地球化学研究[D].合肥: 中国科学技术大学, 2014.

    KANG Yu. Environmental biogeochemistry of arsenic in coal mining area[D]. Hefei: University of Science and Technology of China, 2014.
    [3] WANG C, ZHANG Y, SHI Y, LIU H, ZOU C, WU H, KANG X. Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants[J]. Fuel, 2017, 210:527-534. doi: 10.1016/j.fuel.2017.08.108
    [4] TIAN H Z, ZHU C Y, GAO J J, CHENG K, HAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:Historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys, 2015, 15(17):10127-10147. doi: 10.5194/acp-15-10127-2015
    [5] LI S, GUO S, HUANG X, HUANG T, BIBI I, MUHAMMAD F, XU G, ZHAO Z, YU L, YAN Y, JIAO B, NIAZI N K, LI D. Research on characteristics of heavy metals (As, Cd, Zn) in coal from southwest China and prevention method by using modified calcium-based materials[J]. Fuel, 2016, 186:714-725. doi: 10.1016/j.fuel.2016.09.008
    [6] LI J, PENG Y, CHANG H, LI X, CRITTENDEN J C, HAO J. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng, 2016, 10(3):413-427. doi: 10.1007/s11783-016-0832-3
    [7] PRATIM B, WU C Y. Control of toxic metal emissions from combustors using sorbents:A review[J]. J Air Waste Manage, 1998, 48(2):113-127. doi: 10.1080/10473289.1998.10463657
    [8] WANG J, ZHANG Y, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W P. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions[J]. Energy Fuels, 2017, 31(7):7309-7316. doi: 10.1021/acs.energyfuels.7b00711
    [9] ZHAO Y C, ZHANG J Y, HUANG W C, WANG Z H, LI Y, SONG D Y, ZHAO, F H, ZHENG C G. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China[J]. Energy Convers Manage, 2008, 49(4):615-624. doi: 10.1016/j.enconman.2007.07.044
    [10] YANG Y, HU H, XIE K, HUANG Y, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019, 37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064
    [11] ZHANG K, ZHANG D, ZHANG K, CAO Y. Capture of gas-phase arsenic by ferrospheres separated from fly ashes[J]. Energy Fuels, 2016, 30(10):8746-8752. doi: 10.1021/acs.energyfuels.6b01637
    [12] 张月, 王春波, 刘慧敏, 孙喆, 李文瀚, 张永生, 潘伟平.金属氧化物吸附剂干法脱除气相As2O3实验研究[J].燃料化学学报, 2015, 43(4):476-482. doi: 10.3969/j.issn.0253-2409.2015.04.016

    ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol, 2015, 43(4):476-482. doi: 10.3969/j.issn.0253-2409.2015.04.016
    [13] MAHULI S, AGNIHOTRI R, CHAUK S, GHOSHDASTIDAR A, FAN L S. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997, 31(11):3226-3231. doi: 10.1021/es9702125
    [14] STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds:Kinetics and speciation of the reaction with calcium silicates[J]. Chemosphere, 2003, 51(10):1111-1119. doi: 10.1016/S0045-6535(02)00722-1
    [15] 张月, 李文瀚, 王春波, 刘慧敏, 张永生, 潘伟平.超声波辅助浸渍法制备Fe2O3/γ-Al2O3吸附剂脱除气相As2O3的实验研究[J].燃料化学学报, 2015, 43(9):1134-1141. doi: 10.3969/j.issn.0253-2409.2015.09.017

    ZHANG Yue, LI Wen-han, WANG Chun-bo, LIU Hui-min, ZHANG Yong-sheng, PAN Wei-ping. Experimental study on As2O3 capture from gas phase using ultrasound-assisted prepared Fe2O3/γ-Al2O3 sorbent[J]. J Fuel Chem Technol, 2015, 43(9):1134-1141. doi: 10.3969/j.issn.0253-2409.2015.09.017
    [16] HUANG Y, YANG Y, HU H, XU M, LIU H, LI X, WANG X, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Proc Combust Inst, 2019, 37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064
    [17] CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015, 267:201-206. doi: 10.1016/j.cej.2015.01.035
    [18] 张军营, 任德贻, 钟秦, 徐复铭, 张衍国. CaO对煤中砷挥发性的抑制作用[J].燃料化学学报, 2000, 28(3):198-200. doi: 10.3969/j.issn.0253-2409.2000.03.002

    ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yan-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chem Technol, 2000, 28(3):198-200. doi: 10.3969/j.issn.0253-2409.2000.03.002
    [19] JADHAV R A, FAN L S. Capture of gas-phase arsenic oxide by Lime:Kinetic and mechanistic studies[J]. Environ Sci Technol, 2001, 35(4):794-799. doi: 10.1021/es001405m
    [20] LI Y, TONG H, ZHUO Y, LI Y, XU X. Simultaneous removal of SO2 and trace As2O3 from flue gas:Mechanism, kinetics study, and effect of main gases on arsenic capture[J]. Environ Sci Technol, 2007, 41(8):2894-2900. doi: 10.1021/es0618494
    [21] ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) Surface[J]. Energy Fuels, 2019, 33(2):1414-1421. doi: 10.1021/acs.energyfuels.8b04155
    [22] MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1):150-159. doi: 10.1021-ef990095u/
    [23] ZHOU C, LIU G, XU Z, SUN H, LAM P K S. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017, 204:91-97. doi: 10.1016/j.fuel.2017.05.048
    [24] HU H, CHEN D, LIU H, YANG Y, CAI H, SHEN J, YAO H. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere, 2017, 180:186-191. doi: 10.1016/j.chemosphere.2017.03.114
    [25] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3):539-546. doi: 10.1016/j.fuel.2008.09.028
    [26] SEAMES W S, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007, 31(2):2839-2846. doi: 10.1016/j.proci.2006.08.066
    [27] LIU G, LIAO Y, WU Y, MA X. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive[J]. Appl Energy, 2018, 212:955-965. doi: 10.1016/j.apenergy.2017.12.110
    [28] 张国柱.复合铁酸钙相组成及其理化特性的研究[D].唐山: 华北理工大学, 2017.

    ZHANG Guo-zhu. Study on the crystal composition and physical and chemical properties of SFCA[D]. Tangshan: North China University of Science and Technology, 2017.
    [29] 范晓慧, 孟君, 陈许玲, 庄剑鸣, 李英, 袁礼顺.铁矿烧结中铁酸钙形成的影响因素[J].中南大学学报(自然科学版), 2008, 39(6):1125-1131. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200806002

    FAN Xiao-hui, Meng Jun, CHEN Xu-lin, ZHUANG Jian-ming, LI Ying, YUAN Li-shun. Influence factors of calcium ferrite formation in iron ore sintering[J]. J Cent South Univ, 2008, 39(6):1125-1131. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200806002
    [30] 孟凡俭.复合铁酸钙形成影响因素及初渣生成行为研究[D].鞍山: 辽宁科技大学, 2018.

    MENG Fan-jian. Study on the influencing factors of forming Silico-Ferrite of calcium and aluminum and the behavior of primary slag formation[D]. Anshan: University of Science and Technology Liaoning, 2018.
    [31] 李彦旭, 李春虎, 郭汉贤, 钟炳.铁钙氧化物高温煤气脱硫剂的制备[J].燃料化学学报, 1999, 27(6):49-54. http://cdmd.cnki.com.cn/Article/CDMD-10112-2004097407.htm

    LI Yan-xu, LI Chun-hu, GUO Han-xian, ZHONG Bing. Preparation of iron calcium oxide high temperature gas desulfurizer[J]. J Fuel Chem Technol, 1999, 27(6):49-54. http://cdmd.cnki.com.cn/Article/CDMD-10112-2004097407.htm
    [32] 杨立寨, 祁海鹰, 由长福, 徐旭常.中温条件下氧化铁对氧化钙脱硫的活化作用[J].化工学报, 2003, 54(1):86-90. doi: 10.3321/j.issn:0438-1157.2003.01.019

    YANG Li-zhai, QI Hai-ying, YOU Chang-fu, XU Xu-chang. Activation of Fe2O3 to desulfurization with CaO AT medium temperature[J]. J Chem Ind Eng, 2003, 54(1):86-90. doi: 10.3321/j.issn:0438-1157.2003.01.019
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  39
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-05-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回