留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2O对SO2在CaO表面上吸附的影响理论研究

闫广精 王春波 张月 陈亮

闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1163-1172.
引用本文: 闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1163-1172.
YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1163-1172.
Citation: YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1163-1172.

H2O对SO2在CaO表面上吸附的影响理论研究

基金项目: 

国家自然科学基金 51976059

详细信息
    通讯作者:

    YAN Guang-jing, E-mail: 1532828742@qq.com

  • 中图分类号: X511

Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study

Funds: 

the National Natural Science Foudation of China 51976059

  • 摘要: 采用密度泛函理论研究了H2O对SO2在CaO(001)表面上吸附的影响。结果表明,以四种形式(-H2O、-H、-OH和-H&-OH)存在的H2O使SO2在CaO表面上的吸附构型发生改变。SO2在不同形式H2O基团邻位吸附时,-H使S原子的p轨道态密度峰明显左移且吸附能比洁净表面大90 kJ/mol,其余基团表面吸附能无明显变化;SO2吸附于-OH和-H&-OH生成HSO3基团,吸附能相比于洁净表面较小,可能作为暂态结构;SO2吸附于-H2O生成SO3基团,H2O断键生成的H基团起主要吸附作用,CaO表面上生成类似Ca(OH)2的局部结构且吸附能比洁净表面大45 kJ/mol。
  • 图  1  SO2在洁净CaO表面上吸附构型及电子密度图

    Figure  1  Structure and electron density maps of SO2 adsorbed on clean CaO surfaces (red: O atom; yellow: S atom; green: Ca atom)

    图  2  H2O在洁净CaO表面上吸附构型及电子密度图(白色原子为H原子, 下同)

    Figure  2  Structure and electron density maps of H2O adsorbed on clean CaO surfaces (white, H atom)

    图  3  SO2在H2O邻位吸附构型

    Figure  3  Structures of SO2 adsorbed near the H2O groups

    图  4  SO2在H2O上吸附构型(构型4)及电子密度图

    Figure  4  Structure and electron density map of SO2 adsorbed to the H2O group

    图  5  SO2在-H & -OH基团邻位吸附构型

    Figure  5  Structure of SO2 adsorbed near the -H & -OH groups

    图  6  SO2在-H & -OH基团上吸附构型及电子密度图

    Figure  6  Structure and electron density maps of SO2 adsorbed to the -H & -OH groups

    图  7  SO2在-OH表面上吸附构型

    Figure  7  Structure of SO2 adsorbed to -OH surfaces

    图  8  SO2在-H表面上吸附构型及电子密度图

    Figure  8  Structures and electron density maps of SO2 adsorbed to the -H surfaces

    图  9  SO2分子在不同表面吸附态密度分布图

    Figure  9  Density of state plots for SO2 adsorbed on different surfaces

    (a): clean CaO surface; (b):-H2O surface; (c)-H surface

    表  1  SO2在不同CaO表面吸附构型成键参数及电荷转移

    Table  1  Adsorption energy, S-O bond distance, O-S-O bond angel, S-Osurf distance and charge transfer to SO2 for SO2 adsorption on different CaO surfaces

    Structure Adsorption energy /(kJ·mol-1) S-O bond distance /nm O-S-O bond angle /(°) S-Osurf distance /nm Charge transfer to SO2 (e)
    1-a 163.99 0.152 111.00 0.172 -0.27
    1-b 172.08 0.150 111.00 0.169 -0.26
    3-a 157.34 0.198 140.75 0.212 -0.27
    3-b 147.99 0.150 110.78 0.174 -0.27
    3-c 159.34 0.151 110.53 0.168 -0.27
    5-a 165.43 0.151 110.58 0.167 -0.27
    5-b 170.02 0.150 110.16 0.171 -0.27
    7-a 160.62 0.150 110.44 0.168 -0.26
    7-b 156.66 0.150 110.44 0.171 -0.26
    8-a 259.92 0.154 110.36 - -0.66
    8-b 252.14 0.153 112.72 - -0.67
    8-c 229.63 0.153 111.80 0.299 -0.67
    8-d 251.95 0.154 112.14 - -0.67
    下载: 导出CSV

    表  2  不同情况吸附构型化学键布居数对比

    Table  2  Bond populations for SO2 adsorption on different surfaces

    Structure Bond Population Bond distance Atomic position
    SO2 molecule O1-S1 0.33 1.44
    O2-S1 0.33 1.44
    SO2 adsorbing on clean CaO surfaces (1-a) O1-S1 0.39 1.50 O1, O2 from SO 2,O3 from CaO surface
    O2-S1 0.39 1.50
    O3-S1 0.19 1.71
    SO2 adsorbing on -H2O surface (4) H1-O4 0.48 0.98 O4 and O5 from CaO surface, O3 from H2O, O1 and O2 from SO2
    H2-O5 0.59 0.98
    O1-S1 0.46 1.46
    O2-S1 0.33 1.50
    O3-S1 0.11 1.85
    SO2 adsorbing on -OH surface (7-c) O3-S1 0.48 0.99 O1 from OH group,O2 and O3 from SO2
    O3-S1 0.45 1.47
    O2-S1 0.37 1.50
    O1- S1 0.13 1.81
    O2-Ca1 0.11 2.42
    下载: 导出CSV
  • [1] 邹耀民, 杨义文.大气污染物二氧化硫的荧光检测技术研究进展[J].上海化工, 2019, 44(4): 39-43. doi: 10.3969/j.issn.1004-017X.2019.04.014

    ZOU Yao-min, YANG Yi-wen. Advances in the fluorescence detection technology of atmospheric pollutant sulfur dioxide[J]. Shanghai Chem Ind, 2019, 44(4): 39-43. doi: 10.3969/j.issn.1004-017X.2019.04.014
    [2] 中华人民共和国国家发展和改革委员会.煤电节能减排升级与改造行动计划(2014-2020年)[EB /OL]. http://www.ndrc.gov.cn/gzdt/201409/t20140919_626240.html.

    National Development and Reform Commission. Coal-fired energy-saving emission reduction upgrade plan(2014-2020)[EB /OL]. http://www.ndrc.gov.cn/gzdt/201409/t20140919_626240.html.
    [3] 蒋敏华, 肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社, 2009.

    JIANG Min-hua, XIAO Ping. Large-Scale Circulating Fluidized Bed Boiler Technology[M]. Beijing: China Electric Power Press, 2009.
    [4] WANG C, ZHANG Y, JIA L, TAN Y. Effect of water vapor on the pore structure and sulfation of CaO[J]. Fuel, 2014, 130: 60-65. doi: 10.1016/j.fuel.2014.04.007
    [5] 姜中孝, 段伦博, 陈晓平, 赵长遂.空气燃烧与O2/CO2燃烧气氛下水蒸气对石灰石煅烧/硫化特性的影响[J].中国电机工程学报, 2013, 33(26): 14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201326019

    JIANG Zhong-xiao, DUAN Lun-bo, CHEN Xiao-ping, ZHAO Chang-sui. Effect of water vapor on indirect sulfation during air and O2/CO2 combustion[J]. Proc CSEE, 2013, 33(26): 14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201326019
    [6] STEWART M C, MANOVIC V, ANTHONY E J, MACCHI A. Enhancement of indirect sulphation of limestone by steam addition[J]. Environ Sci Technol, 2010, 44(22): 8781-8786. doi: 10.1021/es1021153
    [7] HSIA C, PIERRE G R ST, RAGHUNATHAN K, FAN L S. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J]. AIChE J, 1993, 39(4): 698-700. doi: 10.1002/aic.690390419
    [8] HSIA C, PIERRE G R S, FAN L. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE J, 1995, 41(10): 2337-2340. doi: 10.1002/aic.690411020
    [9] WANG C, JIA L, TAN Y, ANTHONY E J. The effect of water on the sulphation of limestone[J]. Fuel, 2010, 89(9): 2628-2632. doi: 10.1016/j.fuel.2010.04.022
    [10] 王世昌, 徐旭常, 姚强.水蒸汽对CaO颗粒脱硫反应催化作用的实验研究[J].中国电机工程学报, 2004, 24(9): 256-260. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200409045

    WANG Shi-chang, XU Xu-chang, YAO Qiang. Experimental study on the catalysis effect of steam in the dry flue gas desulfurization reaction by CaO particles[J]. Proc CSEE, 2004, 24(9): 256-260. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200409045
    [11] 祁海鹰, 由长福, 王爱军, 徐旭常.蒸汽活化改善中温烟气脱硫的机理[J].中国电机工程学报, 2002, 22(7): 119-124. doi: 10.3321/j.issn:0258-8013.2002.07.025

    QI Hai-ying, YOU Zhang-fu, WANG Ai-jun, XU Xu-chang. Mechanism of improving the midiem temperature FGD process by reactivating sobernts by steam[J]. Proc CSEE, 2002, 22(7): 119-124. doi: 10.3321/j.issn:0258-8013.2002.07.025
    [12] ZHANG B, LIU J, SHEN F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density Functional theory study[J]. J Phys Chem C, 2015, 119(27): 15047-15055. doi: 10.1021/acs.jpcc.5b00645
    [13] CHENG L, LI W, CHEN Z, AI J, ZHOU Z, LIU J. DFT study of oxygen adsorption on Mo2C(001) and (201) surfaces at different conditions[J]. Appl Surf Sci, 2017, 411: 394-399. doi: 10.1016/j.apsusc.2017.03.195
    [14] LENTZ C, JAND S P, MELKE J, ROTH C, KAGHAZCHI P. DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations[J]. J Mol Catal A: Chem, 2017, 426: 1-9. doi: 10.1016/j.molcata.2016.10.002
    [15] 董静兰, 耿晓, 高正阳, 刘彦丰.飞灰中的缺陷位SiO2对痕量元素As的吸附机理[J].燃料化学学报, 2018, 46(11): 1401-1408. doi: 10.3969/j.issn.0253-2409.2018.11.015

    DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng.Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018, 46(11): 1401-1408. doi: 10.3969/j.issn.0253-2409.2018.11.015
    [16] 刘磊, 金晶, 林郁郁, 侯封校.钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究[J].燃料化学学报, 2015, 43(12): 1414-1419. doi: 10.3969/j.issn.0253-2409.2015.12.002

    LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface: A density functional theory study[J]. J Fuel Chem Technol, 2015, 43(12): 1414-1419. doi: 10.3969/j.issn.0253-2409.2015.12.002
    [17] GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO(100)[J]. Fuel, 2017, 197: 541-550. doi: 10.1016/j.fuel.2017.02.057
    [18] SASMAZ E, WILCOX J. Mercury species and SO2 adsorption on CaO(100)[J]. J Phys Chem C, 2008, 112(42): 16484-16490. doi: 10.1021/jp801250h
    [19] WANG G, WANG W, FAN L, LI Y. CO2 and SO2 sorption on the alkali metals doped CaO(100)surface: A DFT-D study[J]. Appl Surf Sci, 2017, 425: 972-977. doi: 10.1016/j.apsusc.2017.07.158
    [20] CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Z Krist-Cryst mater, 2005, 220(5/6). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027843518/
    [21] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys: Condens matter, 2002, 14(11): 2717-2744. doi: 10.1088/0953-8984/14/11/301
    [22] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1993, 48: 4978. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214985123/
    [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [24] ZINTL E, HARDER A, DAUTH B, ELEKTROCHEM Z. Angew. Zeitschrift für anorganische und allgemeine Chemie[J]. Phys Chem, 1934, 40: 588.
    [25] CUNNINGHAM T L P COOPER D, GERRATT J, KARADAKOV P B, RAIMONDI M. Chemical bonding in oxofluorides of hypercoordinate sulfur[J]. J Chem Soc Faraday Trans, 1997, 93: 2247-2254. doi: 10.1039/a700708f
    [26] FAN Y, ZHUO Y, LI L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017, 420: 465-471. doi: 10.1016/j.apsusc.2017.04.233
    [27] FAN Y, ZHUO Y, ZHU Z, LI L, CHEN Q, LOU Y. Density functional theory study on Hg removal mechanisms of Cu-impregnated activated carbon prepared by simplified method[J]. Korean J Chem Eng, 2016, 33(10): 2869-2877. doi: 10.1007/s11814-016-0153-z
    [28] DE LEEUW N H, WATSON G W, PARKER S C. Atomistic simulation of the effect of dissociative adsorption of water on the surface structure and stability of calcium and magnesium oxide[J]. J Phys Chem C, 1995, 99(47): 17219-17225. doi: 10.1021/j100047a028
    [29] DE LEEUW N H, PURTON J A, PARKER S C, WATSON G W, KRESSE G. Density functional theory calculations of adsorption of water at calcium oxide and calcium fluoride surfaces[J]. Surf Sci, 2000, 452(1/3): 9-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=800824640274aa24002a06848c26634e
    [30] CARRASCO J, ILLAS F, LOPEZ N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces[J]. Phys Rev Lett, 2008, 100(1): 16101. doi: 10.1103/PhysRevLett.100.016101
    [31] FAN Y, YAO J G, ZHANG Z, SCEATS M, ZHUO Y, LI L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018, 169: 24-41. doi: 10.1016/j.fuproc.2017.09.006
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  52
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-07-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回