留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噻吩在Au13和Pt13团簇上加氢脱硫的反应机理比较

蒋军辉 曹勇勇 倪哲明 张连阳

蒋军辉, 曹勇勇, 倪哲明, 张连阳. 噻吩在Au13和Pt13团簇上加氢脱硫的反应机理比较[J]. 燃料化学学报(中英文), 2016, 44(8): 961-969.
引用本文: 蒋军辉, 曹勇勇, 倪哲明, 张连阳. 噻吩在Au13和Pt13团簇上加氢脱硫的反应机理比较[J]. 燃料化学学报(中英文), 2016, 44(8): 961-969.
JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 961-969.
Citation: JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 961-969.

噻吩在Au13和Pt13团簇上加氢脱硫的反应机理比较

基金项目: 

国家自然科学基金资助 21503188

详细信息
  • 中图分类号: O641

Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters

More Information
  • 摘要: 采用密度泛函理论研究了噻吩在立方正八面体的M13M=Au、Pt)团簇上的吸附和加氢脱硫行为。结果表明,噻吩以环吸附于Au13上的Hol-tri位或Pt13上的Hol-quadr位时最稳定,且Pt13上的吸附稳定性更高。在M13催化体系中,按间接加氢脱硫机理,反应可能依顺式加氢的方式进行;其中,C-S键断裂开环所需的活化能最高,是反应的限速步骤;按直接加氢脱硫机理,HS加氢所需活化能最高,是反应的限速步骤。同时该机理总体所需活化能较间接加氢脱硫机理更低,是更为合理的脱硫机理。噻吩加氢脱硫过程中,Au13体系为放热反应,而Pt13体系为吸热反应,并且Au13体系加氢所需活化能更低;因此,Au13更有利于噻吩加氢脱硫反应的进行。
  • 图  1  M13团簇模型

    Figure  1  Model of M13 cluster

    (a): top view; (b): side view

    图  2  噻吩在M13上的稳定吸附构型

    Figure  2  Most stable adsorption configurations of thiophene adsorbed on M13

    (a): thiophene molecule; (b): on Au13; (c): on Pt13

    图  3  噻吩在M13上稳定吸附构型的差分电荷密度

    Figure  3  Charge density difference of thiophene at preferential adsorption site on M13

    (a): Au13; (b): Pt13

    图  4  噻吩加氢脱硫的不同反应路径

    Figure  4  Different reaction pathways for the hydrodesulfurization of thiophene

    图  5  机理C在Au13上以及机理D在Pt13上各反应的能量变化示意图

    Figure  5  Energy change for reactions of mechanism C on Au13 and mechanism D on Pt13

    (a and b represent the reaction on the Au13 and Pt13, respectively; the thick line represents the rate-determining step)

    图  6  机理C各反应物在Au13上结构变化示意图

    Figure  6  Structure change for the reactants of mechanism C on Au13

    图  7  机理D各反应物在Pt13上结构变化示意图

    Figure  7  Structure change for the reactants of mechanism D on Pt13

    图  8  机理F各反应在M13上能量变化示意图

    Figure  8  Energy change for the reactions of mechanism F on M13

    图  9  机理F各反应物在M13上结构变化示意图

    Figure  9  Structure change for the reactants of mechanism F on M13

    表  1  噻吩在M13上的吸附能

    Table  1  Adsorption energies of thiophene on M13

    M13Eads/(kJ·mol-1)
    topbridgehol-trihol-quadr
    Au13-76.5-80.4-89.9-66.6
    Pt13-98.5-194.0-287.8-300.0
    下载: 导出CSV

    表  2  噻吩在M13上稳定吸附构型的吸附能和结构参数

    Table  2  Adsorption energies and structure parameters of thiophene on M13

    ModelEads/(kJ·mol-1)d1/nmd2/nmd3/nmd4/nmd5/nm
    Thiophene (simulation)-0.172 90.137 60.142 40.137 60.172 9
    Thiophene/Au13-89.90.183 50.145 20.137 50.145 10.183 0
    Thiophene/Pt13-300.00.186 80.148 20.143 80.148 20.187 0
    Δd/(Au13)-0.010 60.007 6-0.004 90.007 50.010 1
    Δd/(Pt13)-0.013 90.010 60.001 40.010 60.014 1
    下载: 导出CSV

    表  3  噻吩在M13上的稳定吸附构型的Mulliken电荷布居

    Table  3  Mulliken charges of thiophene at preferential advantage adsorption site on M13

    AtomCharge /e
    SC1C2C3C4H1H2H3H4tol
    Thiophene/Au130.029-0.0320.0090.009-0.0390.1700.1150.1150.1700.537
    Thiophene/Pt130.1450.0530.0440.0450.0530.1540.1360.1360.1540.920
    下载: 导出CSV

    表  4  间接脱硫各反应在M13上的活化能和反应能量变化

    Table  4  Activation barriers and reaction energy of indirect desulfurization reaction on M13

    StepAu13/(kJ·mol-1)Pt13/(kJ·mol-1)
    reactantproductΔEEareactantproductΔEEa
    H2H-12.469.8H2H-99.65.0
    (1)C4H4Sα-C4H5S-33.716.0C4H4Sα-C4H5S135.0138.8
    (2)C4H4Sβ-C4H5S-75.6129.2C4H4Sβ-C4H5S44.2138.1
    (3)α-C4H5Sα, α-C4H6S-34.6100.8β-C4H5Sβ, α-C4H6S81.7116.8
    (4)α-C4H5Sα, β-C4H6S-38.899.7----
    (5)α, β-C4H6Sα, β, α-C4H7S-68.548.6β, α-C4H6Sβ, α, α-C4H7S18.6166.0
    (6)α, β-C4H6Sα, β, β-C4H7S25.133.1β, α-C4H6Sβ, α, β-C4H7S12.8126.2
    (7)α, β, β-C4H7SC4H8S-155.696.1β, α, β-C4H7SC4H8S68.2123.9
    (8)C4H8SC4H9S-9.0227.9C4H8SC4H9S40.9220.4
    (9)C4H9SC4H10+S-148.0111.5C4H9SC4H10+S-20.6149.7
    (10)SHS44.246.6SHS81.9104.2
    (11)HSH2S43.280.3HSH2S150.7166.6
    下载: 导出CSV

    表  5  直接脱硫各反应在M13上的活化能和反应能量变化

    Table  5  Activation barriers and reaction energy of direct desulfurization reaction on M13

    StepReactionAu13Pt13
    ΔE/(kJ·mol-1)Ea/(kJ·mol-1)ΔE/(kJ·mol-1)Ea/(kJ·mol-1)
    (1′)C4H4S+H→C4H5S-88.854.792.2151.4
    (2′)C4H5S+H→C4H6+S-5.322.2-190.8137.1
    (3′)C4H6+S+H→C4H6+HS-16.645.99.019.8
    (4′)C4H6+HS+H→C4H6+H2S-18.582.9150.5154.8
    下载: 导出CSV
  • [1] BASTON E P, FRANCA A B, NETO A V D, URQUIETA-GONZALEZ E A.Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol-gel prepared gamma-Al2O3-ZrO2 supports-Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization[J].Catal Today, 2015, 246:184-190. doi: 10.1016/j.cattod.2014.10.035
    [2] LIAO C N, WANG J Y, LI B.Mechanism of Mo-catalyzed C-S cleavage of thiophene[J].J Organomet Chem, 2014, 749:275-286. doi: 10.1016/j.jorganchem.2013.10.013
    [3] 祖运, 秦玉才, 高雄厚, 莫周胜, 张磊, 张晓彤, 宋丽娟.催化裂化条件下噻吩与改性Y分子筛的作用机制[J].燃料化学学报, 2015, 43(7):862-869. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18664.shtml

    ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan.Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J].J Fuel Chem Technol, 2015, 43(7):862-869. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18664.shtml
    [4] 刘理华, 刘书群, 尹海亮, 柳云骐, 刘晨光.Ni2P和MoS2催化剂在二苯并噻吩加氢脱硫反应中的氢溢流效应[J].燃料化学学报, 2015, 43(6):708-713. doi: 10.1016/S1872-5813(15)30022-0

    LIU Li-hua, LIU Shu-qun, YIN Hai-liang, LIU Yun-qi, LIU Chen-guang.Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J].J Fuel Chem Technol, 2015, 43(6):708-713. doi: 10.1016/S1872-5813(15)30022-0
    [5] SHAN J, TENHU H.Recent advances in polymer protected gold nanoparticles:Synthesis, properties and applications[J].Chem Commun, 2007, 44:4580-4598.
    [6] CORMA A, SERNA P.Chemoselective hydrogenation of nitro compounds with supported gold catalysts[J].Science, 2006, 313(5785):332-334. doi: 10.1126/science.1128383
    [7] LI X H, ZHENG W L, PAN H Y, YU Y, CHEN L, WU P.Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation[J].J Catal, 2013, 300:9-19. doi: 10.1016/j.jcat.2012.12.007
    [8] RAMOS-FERNANDEZ E V, PIETERS C, VAN DER LINDEN B, JNAN-ALCANIZ J, SERRA-CRESPO P, VERHOEVEN M W G M, NIEMANTSVERDRIET H, GASCON J, KAPTEIJN F.Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid-Characterization and catalytic performance[J].J Catal, 2012, 289:42-52. doi: 10.1016/j.jcat.2012.01.013
    [9] LUO S R, CHEN S Z, HSU Y H, YAU S L, LIN Y J, HUANG P Y, CHEN M C.In situ scanning tunneling microscopy characterization of thienothiophene-based semiconducting organic molecules adsorbed on a Au (111) electrode[J].Surf Sci, 2013, 616:155-160. doi: 10.1016/j.susc.2013.05.013
    [10] WANG H M, LGLESIA E.Mechanism and site requirements of thiophene hydrodesulfurization catalyzed by supported Pt clusters[J].Chemcatchem, 2011, 3(7):1166-1175. doi: 10.1002/cctc.v3.7
    [11] ZHU H Y, GUO W Y, JIANG R B, ZHAO L M, LU X Q, LI M, FU D L, SHAN H H.Decomposition of methanthiol on Pt (111):A density functional investigation[J].Langmuir, 2010, 26(14):12017-12025. doi: 10.1021/la101678d
    [12] 倪哲明, 施炜, 夏明玉, 薛继龙.Au (111) 面上噻吩加氢脱硫反应机理的理论研究[J].高等学校化学学报, 2013, 34(10):2353-2362. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201310020.htm

    NI Zhe-ming, SHI Wei, XIA Ming-yu, XUE Ji-long.Theoretical studies on reaction mechanism of hydrodesulfurization of thiophene catalyzed by Au (111) plane[J].Chem J Chin Univ, 2013, 34(10):2353-2362. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201310020.htm
    [13] LI Z, CHEN Z X, HE X, KANG G J.Theoretical studies of acrolein hydrogenation on Au-20 nanoparticle[J].J Chem Phys, 2010, 132(18):184702. doi: 10.1063/1.3407439
    [14] IMADA Y, OSAKI M, NOGUCHI M, MAEDA T, FUJIKI M, KAWAMORITA S, KOMIYA N, NAOTA T.Flavin-functionalized gold nanoparticles as an efficient catalyst for aerobic organic transformations[J].ChemCatChem, 2015, 7(1):99-106. doi: 10.1002/cctc.v7.1
    [15] BUCHWALTER P, ROSE J, BRAUNSTEIN P.Multimetallic catalysis based on heterometallic complexes and clusters[J].Chem Rev, 2015, 115(1):28-126. doi: 10.1021/cr500208k
    [16] LARSSON J A, NOLAN M, GREER J C.Interactions between thiol molecular linkers and the Au-13 nanoparticle[J].J Phys Chem B, 2002, 106(23):5931-5937. doi: 10.1021/jp014483k
    [17] 徐坤, 冯杰, 褚绮, 张丽丽, 李文英.噻吩在γ-Mo2N (100) 表面上加氢脱硫反应的密度泛函理论研究[J].物理化学学报, 2014, 30(11):2063-2070.

    XU Kun, FENG Jie, CHU Qi, ZHANG Li-li, LI Wen-ying.Density function theory study of thiophene hydrodesulfurization onγ-Mo2N (100) surface[J].Acta Phys Chim Sin, 2014, 30(11):2063-2070.
    [18] HAMMER B, HANSEN L B, NORSKOV J K.Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Phys Rev B, 1999, 59(11):7413-7421. doi: 10.1103/PhysRevB.59.7413
    [19] 蒋军辉, 夏盛杰, 倪哲明, 张连阳.巴豆醛在Au (111) 面上的吸附及选择性加氢机理研究[J].高等学校化学学报, 2016, 37(4):693-700. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201604016.htm

    JIANG Jun-hui, XIA Sheng-jie, NI Zhe-ming, ZHANG Lian-yang.Adsorption and selective hydrogenation mechanism of crotonaldehyde on Au (111) surface[J].Chem J Chin Univ, 2016, 37(4):693-700. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201604016.htm
    [20] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花.密度泛函理论研究氧空位对HFO2晶格结构和电学特性影响[J].物理学报, 2015, 64(3):033101.

    DAI Guang-zhen, JIANG Xian-wei, XU Tai-long, LIU Qi, CHEN Jun-ning, DAI Yue-hua.Effect of oxygen vacancy on lattice and electronic properties of HFO2 by means of density function theory study[J].Acta Phys Sin, 2015, 64(3):033101.
    [21] GE Q, JENKINS S J, KING D A.Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J].Chem Phys Lett, 2000, 327(3/4):125-130.
    [22] DELLEY B.Fast calculation of electrostatics in crystals and large molecules[J].J Phys Chem, 1996, 100(15):6107-6110. doi: 10.1021/jp952713n
    [23] GULIAMOV O, FRENKEL A I, MENARD L D, NUZZO R G, KRONIK L.Tangential ligand-induced strain in Icosahedral Au-13[J].J Am Chem Soc, 2007, 129(36):10978. doi: 10.1021/ja0725706
    [24] APRA E, FORTUNELLI A.Density-functional calculations on platinum nanoclusters:Pt-13, Pt-38, and Pt-55[J].J Phys Chem A, 2003, 107(16):2934-2942. doi: 10.1021/jp0275793
    [25] MAGER-MAURY C, BONNARD G, CHIZALLET C, SAUTET P, RAYBAUD P.H-2-induced reconstruction of supported Pt clusters:Metal-support interaction versus surface hydride[J].ChemCatChem, 2011, 3(1):200-207. doi: 10.1002/cctc.201000324
    [26] SHAFAI G, HONG S Y, BERTINO M, RAHMAN T S.Effect of ligands on the geometric and electronic structure of Au-13 clusters[J].J Phys Chem C, 2009, 113(28):12072-12078. doi: 10.1021/jp811200e
    [27] CHENG P, ZHANG S L, WANG P, HUANG S P, TIAN H P.First-principles investigation of thiophene adsorption on Ni-13 and Zn@Ni-12 nanoclusters[J].Comput Theor Chem, 2013, 1020:136-142. doi: 10.1016/j.comptc.2013.07.044
    [28] SHI W, ZHANG L Y, XIA S J, NI Z M.Adsorption of thiophene on M (111)(M=Pd, Pt, Au) surfaces[J].Acta Phys Chim Sin, 2014, 30(12):2249-2255.
    [29] WANG H M, LGLESIA E.Thiophene hydrodesulfurization catalysis on supported Ru clusters:Mechanism and site requirements for hydrogenation and desulfurization pathways[J].J Catal, 2010, 273(2):245-256. doi: 10.1016/j.jcat.2010.05.019
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  81
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-04-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回