留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts

GUO Li-li LIU Lu ZHU Xiao-lin ZHANG Qiang LI Chun-yi

郭丽丽, 刘璐, 祝晓琳, 张强, 李春义. Mg/Al物质的量比对Ce-La/MgAl2O4-x催化剂催化CO还原NO性能的影响[J]. 燃料化学学报(中英文), 2017, 45(6): 723-730.
引用本文: 郭丽丽, 刘璐, 祝晓琳, 张强, 李春义. Mg/Al物质的量比对Ce-La/MgAl2O4-x催化剂催化CO还原NO性能的影响[J]. 燃料化学学报(中英文), 2017, 45(6): 723-730.
GUO Li-li, LIU Lu, ZHU Xiao-lin, ZHANG Qiang, LI Chun-yi. Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 723-730.
Citation: GUO Li-li, LIU Lu, ZHU Xiao-lin, ZHANG Qiang, LI Chun-yi. Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 723-730.

Mg/Al物质的量比对Ce-La/MgAl2O4-x催化剂催化CO还原NO性能的影响

详细信息
  • 中图分类号: O643.36

Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts

More Information
  • 摘要: 采用初始浸渍法制备了不同Mg/Al物质的量比的Ce-La/MgAl2O4-x催化剂,并通过低温N2-吸附脱附、XRD、H2-TPR和CO-TPR等手段对其进行了表征。结果表明,在Mg/Al物质的量比为0.5时,催化剂催化CO还原NO的性能最好。这主要是因为适量Mg的添加促进了CeO2的分散和Ce-O-La固溶体的形成,从而使得表面Ce3+和氧空穴增加。两者的协同作用使得Ce-La/MgAl2O4-0.5表现出最佳的催化性能。另外,适量Mg的引入可以抑制Ce(SO42和Ce2(SO43的形成,从而提高了Ce-La/MgAl2O4-0.5催化剂抗硫中毒能力。
  • Figure  1  Catalytic performance of Ce-La/MgAl2O4-x catalysts as a function of temperature

    a:Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5;c: Ce-La/MgAl2O4-1.0 reaction conditions: 0.1% NO, 4% CO, 2% O2 in balance N2, GHSV=24 000 h-1

    Figure  2  SO2 resistance tests over Ce-La/MgAl2O4-x catalysts

    a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0 reaction conditions: 0.1% NO, 4% CO, 2% O2, 0.08% SO2 in balance N2, GHSV=24 000 h-1, t=700 ℃

    Figure  3  Regeneration ability of poisoned Ce-La/MgAl2O4-0.5 catalyst

    ■, □, : fresh Ce-La/MgAl2O4-0.5; ●, ○, ⊗: regenerated Ce-La/MgAl2O4-0.5 NO conversion (● and ■), CO conversion (⊗ and ), SO2 conversion( and ) reaction conditions: 0.1%NO, 4%CO, 2%O2, 0.08%SO2, in balance N2, GHSV=24 000 h-1, t=700 ℃ regeneration conditions: 10 mL/min of H2 for 20 min, t=550 ℃

    Figure  4  XRD patterns of catalysts

    a: Ce/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.2; c: Ce-La/MgAl2O4-0.5; d: Ce-La/MgAl2O4-1.0

    Figure  5  H2-TPR profiles of catalysts

    a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0

    Figure  6  CO-TPR profiles of catalysts

    a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0

    Figure  7  Schematic diagram for Ce-O-La solid solution

    (a) the schematic diagram of crystal structure of Ce-O-La solid solution and (b) the possible pathway for generation of oxygen vacancies and NO removal by CO over Ce-O-La solid solution

    Figure  8  XRD patterns of poisoned Ce-La/MgAl-x catalysts

    a: Ce-La/MgAl2O4-0.2-P; b: Ce-La/MgAl2O4-0.5-P; c: Ce-La/MgAl2O4-0.5-P-P; d: Ce-La/MgAl2O4-1.0

    Figure  9  In situ FT-IR spectra of SO2 + O2 co-adsorption over Ce-La/MgAl2O4-0.5 at 200 and 500 ℃ reaction gas mixture: 0.08% SO2, 2% O2 in balance N2

    Figure  10  Deactivation mechanism of Ce-La/MgAl2O4 catalyst or the catalytic cycle for the elimination of SOx

    Table  1  Textural properties of the prepared supports and catalysts

    Table  2  Textural properties of poisoned catalysts

  • [1] CRUTZEN P J, BRVHL C. Catalysis by NOx as the main cause of the spring to fall stratospheric ozone decline in the northern hemisphere[J]. J Phys Chem A, 2001, 105 : 1579-1582. doi: 10.1021/jp001984h
    [2] BABICH I V, SESHAN K, LEFFERTS L. Nature of nitrogen specie in coke and their role in NOx, formation during FCC catalyst regeneration[J]. Appl Catal B: Environ, 2005, 59 (3/4): 205-211.
    [3] SCHMAL M, VANNICE M A, BALDANZA M A S. Pd-xMo/Al2O3 catalysts for NO reduction by CO[J]. J Catal, 1999, 185 : 138-151. doi: 10.1006/jcat.1999.2465
    [4] SHIN H K, HIRABAYASHI H, YAHIRO H, WATANABE M. Selective catalytic reduction of no by ethene in excess oxygen over platinum ion-exchanged MFI zeolites[J]. Catal Today, 1995, 26 (1):13-21. doi: 10.1016/0920-5861(95)00125-Y
    [5] LIMA R K C D, BATISTA M S, WALLAU M, SANCHES E P. High specific surface area LaFeCo perovskites-synthesis by nanocasting and catalytic behavior in the reduction of NO with CO[J]. Appl Catal B: Environ, 2009, 90 (3): 441-450. https://www.researchgate.net/publication/244110671_High_specific_surface_area_LaFeCo_perovskites-Synthesis_by_nanocasting_and_catalytic_behavior_in_the_reduction_of_NO_with_CO
    [6] ILIEVA L, PANTALEO G, IVANOV I, VENEZIA A M. Gold catalysts supported on CeO2, and CeO2-Al2O3 for NOx reduction by CO[J]. Appl Catal B: Environ, 2006, 65 (1/2): 101-109.
    [7] TROVARELLI A, LEITENBURG C D, BOARO M, DOLCETTI G. The utilization of ceria in industrial catalysis[J]. Catal Today, 1999, 50 (2): 353-367. doi: 10.1016/S0920-5861(98)00515-X
    [8] KIM J R, MYEONG W J, IHM S K. Characteristics of CeO2-ZrO2, mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO[J]. J Catal, 2009, 263 (1): 123-133. doi: 10.1016/j.jcat.2009.02.001
    [9] BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ [J]. J Phys Chem C, 2009, 113 (10): 4059-4068. doi: 10.1021/jp8060569
    [10] CHEN J, ZHU J, ZHAN Y, LIN X, CAI G, WEI K, ZHENG Q. Characterization and catalytic performance of Cu/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction by CO[J]. Appl Catal A: Gen, 2009, 363 (1): 208-215.
    [11] GAYEN A, BAIDYA T, RAMESH G S, SRIHARI R, HEGDE M S. Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts Ce1-x-y(La/Y)xPtyO2-δ [J]. J Chem Sci, 2006, 118 (1): 47-55. doi: 10.1007/BF02708765
    [12] ILIEVA L, PANTALEO G, IVANOV I, NEDYALKOVA R, VENEZIA A M. NO reduction by CO over gold based on ceria doped by rare earth metals[J]. Catal Today, 2008, 139 (3): 168-173. doi: 10.1016/j.cattod.2008.06.033
    [13] BHATTACHARYYA A A, WOLTERMANN G M, JIN S Y, KARCH J A, CORMIER W E. Catalytic SOx abatement: The role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas[J]. Ind Eng Chem Res, 1988, 27 (8): 1356-1360. doi: 10.1021/ie00080a004
    [14] FORNASARI G, TRIFIRÒF, VACCARI A, PRINETTO F, GHIOTTI G, CENTI G. Novel low temperature NOx, storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds[J]. Catal Today, 2002, 75 (1/4): 421-429.
    [15] BOARO M, GIORDANO F, RECCHIA S, SANTO V D, GIONA M, TROVARELLI A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts[J]. Appl Catal B: Environ, 2004, 52 (3): 225-237. doi: 10.1016/j.apcatb.2004.03.021
    [16] LI J, LUO G, CHU Y, WEI F. Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process[J]. Chem Eng J, 2012, 184 (2): 168-175. https://www.deepdyve.com/lp/elsevier/experimental-and-modeling-analysis-of-no-reduction-by-co-for-a-fcc-htkk6r16gP
    [17] TROVARELLI A, Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev, 1996, 38 (4): 439-520. doi: 10.1080/01614949608006464
    [18] KUMAR P A, REDDY M P, HYUN-SOOK B, PHIL H H. Influence of Mg addition on the catalytic activity of alumina supported Ag for C3H6-SCR of NO[J]. Catal Lett, 2009, 131 (1): 85-97.
    [19] DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002, 234 (1/2): 271-282. https://www.deepdyve.com/lp/elsevier/experimental-and-modeling-analysis-of-no-reduction-by-co-for-a-fcc-htkk6r16gP
    [20] WU L, WIESMANN H J, MOODENBAUGH A R, KLIE R F, ZHU Y, WELCH D O, SUENAGA M. Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size[J]. Phys Rev B, 2004, 69 (12): 125415-125417. doi: 10.1103/PhysRevB.69.125415
    [21] SONG Z, LIU W, NISHIGUCHI H. Quantitative analyses of oxygen release/storage and CO2 adsorption on ceria and Pt-Rh/ceria[J]. Catal Commun, 2007, 8 (4): 725-730. doi: 10.1016/j.catcom.2006.08.048
    [22] SELLICK D R, ARANDA A, GARCÍA T, LÓPEZ J M, SOLSONA B, MASTRAL A M, MORGAN D J, CARLEY A F, TAYLOR S H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Appl Catal B: Environ, 2013, 132-133 (1): 98-106.
    [23] ACERBI N, GOLUNSKI S, TSANG S C, DALY H, HARDACRE C, SMITH R, COLLIER P. Promotion of ceria catalysts by precious metals: Changes in nature of the interaction under reducing and oxidizing conditions[J]. J Phys Chem C, 2012, 116 (25): 13569-13583. doi: 10.1021/jp212233u
    [24] MADIER Y, DESCORME C, GOVIC A M L, DUPREZ D. Oxygen mobility in CeO2 and CexZr1-xO2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange[J]. J Phys Chem B, 1999, 103 (50): 10999-11006. doi: 10.1021/jp991270a
    [25] LIU X, ZHOU K, WANG L, WANG B, LI Y, AM J. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc, 2016, 131 (9): 3140-3141. doi: 10.1021/ja808433d
    [26] KANTCHEVA M, SAMARSKAYA O, ILIEVA L, PANTALEO G, VENEZIA A M, ANDREEVA D. In situ FT-IR investigation of the reduction of NO with CO over Au/CeO-Al2O3 catalyst in the presence and absence of H2[J]. Appl Cata B: Environ, 2009, 88 (1/2): 113-126.
    [27] OH S H, FISHER G B, CARPENTER J E, GOODMAN D W. Comparative kinetic studies of CO+O2 and CO+NO reactions over single crystal and supported rhodium catalysts[J]. J Catal, 1986, 100 (2): 360-376. doi: 10.1016/0021-9517(86)90103-X
    [28] NAM I S, ELDRIDGE J W, KITTRELL J R. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia[J]. Ind Eng Chem Prod Res Dev, 2002, 25 (2): 192-197.
    [29] XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys. Chem C, 2016, 113 (11): 4426-4432.
    [30] WAQIFA M, BAZINA P, SAURA O, LAVALLEY, BLANCHARD G, TOURET O. Study of ceria sulfation[J]. Appl Catal B: Environ, 1997, 11 (2): 193-205. doi: 10.1016/S0926-3373(96)00040-9
    [31] LUO T, GORTE R J. Characterization of SO2-poisoned ceria-zirconia mixed oxides[J]. Appl Catal B: Environ, 2004, 53 (2): 77-85. doi: 10.1016/j.apcatb.2004.04.020
    [32] DONG W K, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOxby NH3[J]. Appl Catal B: Environ, 2015, 166-167 (1): 37-44.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  21
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-04-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回