留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究

周文波 牛胜利 王栋 路春美 韩奎华 李英杰 朱英

周文波, 牛胜利, 王栋, 路春美, 韩奎华, 李英杰, 朱英. 钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1224-1235.
引用本文: 周文波, 牛胜利, 王栋, 路春美, 韩奎华, 李英杰, 朱英. 钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1224-1235.
ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.
Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.

钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究

基金项目: 

国家自然科学基金 51576117

国家自然科学基金 21906090

山东省重大科技创新工程项目 2019JZZY020305

详细信息
  • 中图分类号: TQ534

Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study

Funds: 

The National Natural Science Foundation of China 51576117

The National Natural Science Foundation of China 21906090

Important Project in the Scientific Innovation of Shandong Province 2019JZZY020305

More Information
  • 摘要: 采用密度泛函理论(DFT)研究了典型过渡金属Ti掺杂改性对γ-Fe2O3选择催化还原(NH3-SCR)脱硝性能强化影响的作用机制。构建了单Ti和双Ti在γ-Fe2O3(001)表面的不同Fe位置的掺杂模型,计算了表面掺杂形成能,探讨了O2、NO和NH3分子在Ti掺杂前后的γ-Fe2O3(001)表面的吸附特性,并进行了反应机理分析。结果表明,单Ti倾向于掺杂在八面体Feoct位,双Ti倾向于两个Feoct位。Ti的掺杂增强了催化剂表面对O2的吸附能力,吸附性能随Ti掺杂量增加而增强。单Ti和双Ti的掺杂都抑制了NO以N端在催化剂表面的吸附。Ti能够强化NH3的吸附,增强了Lewis酸位,有利于SCR反应。Ti的掺杂增大了NO2生成的反应能垒,降低了γ-Fe2O3低温区的SCR反应。Ti的掺杂抑制了NH和N的形成,避免了NH3的过度氧化,提高NH3的利用率,有利于SCR反应,并且抑制了通过E-R机理产生的N2O,具有良好的N2选择性。Ti的掺杂能够改善γ-Fe2O3在NH3-SCR中还原NO的性能。
  • 图  1  γ-Fe2O3的晶胞示意图

    Figure  1  Unit cell of γ-Fe2O3

    图  2  γ-Fe2O3(001)表面结构示意图

    Figure  2  Structure of the γ-Fe2O3(001) surface

    (a): front view; (b): top view

    图  3  Ti掺杂的催化剂俯视图

    Figure  3  Top view of Ti-doped catalyst

    图  4  氧分子在γ-Fe2O3、Ti-γFe2O3和2Ti-γFe2O3表面的吸附优化模型

    Figure  4  Optimized models of O2 adsorbed on γ-Fe2O3 and Ti modified γ-Fe2O3

    (a):horizontal adsorption of O2 on γ-Fe2O3; (b):vertical adsorption of O2 on γ-Fe2O3; (c):horizontal adsorption of O2 on Ti-γFe2O3; (d):vertical adsorption of O2 on Ti-γFe2O3; (e):horizontal adsorption of O2 on 2Ti-γFe2O3; (f):vertical adsorption of O2 on 2Ti-γFe2O3

    图  5  NH3γ-Fe2O3、Ti-γFe2O3和2Ti-γFe2O3表面的优化吸附模型

    Figure  5  Optimized models of NH3 adsorbed on γ-Fe2O3 and Ti modified γ-Fe2O3

    (a): NH3 adsorbed on γ-Fe2O3(oct site); (b): NH3 adsorbed on Ti-γFe2O3(oct site); (c): NH3 adsorbed on 2Ti-γFe2O3(oct site); (d): NH3 adsorbed on γ-Fe2O3(tet site); (e): NH3 adsorbed on Ti-γFe2O3(tet site); (f): NH3 adsorbed on 2Ti-γFe2O3(tet site); (g): NH3 adsorbed on γ-Fe2O3(O site); (h): NH3 adsorbed on Ti-γFe2O3(O site); (i): NH3 adsorbed on 2Ti-γFe2O3(O site)

    图  6  NO分子在γ-Fe2O3、Ti-γFe2O3和2Ti-γFe2O3表面的优化吸附模型示意图

    Figure  6  Optimized models of NO adsorbed on γ-Fe2O3 and Ti modified γ-Fe2O3

    (a): NO adsorbed on γ-Fe2O3 (N); (b): NO adsorbed on Ti-γFe2O3 (N); (c): NO adsorbed on 2Ti-γFe2O3 (N); (d): NO adsorbed on γ-Fe2O3 (O); (e): NO adsorbed on Ti-γFe2O3 (O); (f): NO adsorbed on 2Ti-γFe2O3 (O)

    图  7  γ-Fe2O3上NH3脱氢反应的势能图和优化结构示意图

    Figure  7  Potential energy diagram and optimized structures of NH3 dehydrogenation reaction over γ-Fe2O3

    图  8  Ti-γFe2O3上NH3脱氢反应的势能图和优化结构示意图

    Figure  8  Potential energy diagram and optimized structures of NH3 dehydrogenation reaction over Ti-γFe2O3

    图  9  γ-Fe2O3上NO2生成的能量分布和相应的优化结构

    Figure  9  Energy profiles and corresponding optimized structures of NO2 formation over γ-Fe2O3

    表  1  模型平均键长的计算值和文献值对比

    Table  1  Calculated average bond lengths in the model compared with those reported in the literature

    Species Bond type Bond length/Å
    calculated literature
    O2 r(O-O) 1.237 1.208[21]
    NO r(N-O) 1.197 1. 151[22]
    NH3 r(N-H) 1.028 1.012[23]
    下载: 导出CSV

    表  2  O2吸附在γ-Fe2O3、Ti-γFe2O3和2Ti-γFe2O3表面的优化构型和吸附能

    Table  2  Optimized geometries and adsorption energies of O2 adsorbed on γ-Fe2O3 and Ti modified γ-Fe2O3

    Eads /eV O1-O2 A-O1 D-O2 ΔQ /e
    γ-Fe2O3 A -0.93 1.319 2.026 2.039 -0.38
    B -0.45 1.245 2.289 -0.06
    Ti-γFe2O3 C -1.27 1.398 1.949 1.906 -0.63
    D -0.81 1.285 1.857 -0.33
    2Ti-γFe2O3 E -1.96 1.430 1.911 1.911 -0.66
    F -0.89 1.291 1.839 -0.35
    下载: 导出CSV

    表  3  γ-Fe2O3、Ti-γFe2O3和2Ti-γFe2O3表面NH3吸附的优化构型和吸附能

    Table  3  Optimized geometries and adsorption energies of NH3 adsorbed on γ-Fe2O3 and Ti modified γ-Fe2O3

    Adsorption site Eads /eV D-N /Å E-N /Å O-H /Å
    γ-Fe2O3(oct site) -1.01 2.193
    γ-Fe2O3(tet site) 0.10 3.279
    γ-Fe2O3(O site) -0.16 2.262
    Ti-γFe2O3(oct site) -1.26 2.278
    Ti-γFe2O3(tet site) -0.12 3. 311
    Ti-γFe2O3(O site) -0.16 2.260
    2Ti-γFe2O3(oct site) -1.24 2.271
    2Ti-γFe2O3(tet site) -0.13 3.377
    2Ti-γFe2O3(O site) -0.16 2.248
    下载: 导出CSV

    表  4  NH3吸附在催化剂表面的Mulliken电荷布局

    Table  4  Mulliken atomic charge populations for NH3 adsorption on catalyst surfaces

    Charge/ e N H1 H2 H3 NH3
    γ-Fe2O3(oct site) -1.10 0.39 0.38 0.38 0.05
    γ-Fe2O3(tet site) -1.12 0.38 0.38 0.37 0.01
    γ-Fe2O3(O site) -1.10 0.31 0.37 0.38 -0.04
    Ti-γFe2O3(oct site) -1.09 0.38 0.37 0.38 0.04
    Ti-γFe2O3(tet site) -1.10 0.37 0.38 0.37 0.02
    Ti-γFe2O3(O site) -1.10 0.31 0.37 0.37 -0.05
    2Ti-γFe2O3(oct site) -1.09 0.38 0.37 0.38 0.04
    2Ti-γFe2O3(tet site) -1.11 0.38 0.38 0.37 0.02
    2Ti-γFe2O3(O site) -1.10 0.30 0.36 0.37 -0.07
    下载: 导出CSV

    表  5  NO吸附在催化剂表面的优化构型和吸附能

    Table  5  Optimized geometries and adsorption energies of NO adsorbed on catalyst surfaces

    Eads /eV D-N /Å D-O /Å N-O /Å ΔQ /e
    γ-Fe2O3(001)(N) -1.95 1.639 1.190 -0.05
    Ti-γFe2O3(001)(N) -1.10 1.938 1.212 -0.22
    2Ti-γFe2O3(001)(N) -1.15 1.925 1.214 -0.24
    γ-Fe2O3(001)(O) -0.52 1.759 1.205 -0.07
    Ti-γe2O3(001)(O) -0.57 1.920 1.249 -0.28
    2Ti-γFe2O3(001)(O) -0.65 1.906 1.253 -0.29
    下载: 导出CSV
  • [1] 李颖, 牛胜利, 路春美, 王家兴, 彭建升.生物质再燃异相还原NO的分子模拟[J].燃料化学学报, 2020, 48(6):689-697. http://www.ccspublishing.org.cn/article/id/c46d5c07-4145-4f3d-a991-d228e038f4fe

    LI Ying, NIU Sheng-li, LU Chun-mei, WANG Jia-xing, PENG Jian-sheng. Molecular simulation study of NO heterogeneous reduction by biomass reburning[J]. J Fuel Chem Technol, 2020, 48(6):689-697. http://www.ccspublishing.org.cn/article/id/c46d5c07-4145-4f3d-a991-d228e038f4fe
    [2] 束航, 张玉华, 杨林军, 刘亚明, 李方勇, 徐齐胜, 盘思伟. SCR烟气脱硝对PM2.5排放特性的影响机制研究[J].燃料化学学报, 2015, 43(12):1510-1515. http://www.ccspublishing.org.cn/article/id/100033461

    SHU Hang, ZHANG Yu-hua, YANG Lin-jun, LIU Ya-ming, LI Fang-yong, XU Qi-sheng, PAN Si-wei. Effects of SCR-DeNOx system on emission characteristics of fine particles[J]. J Fuel Chem Technol, 2015, 43(12):1510-1515. http://www.ccspublishing.org.cn/article/id/100033461
    [3] LI Y H, DENG J L, SONG W Y, LIU J, ZHAO Z, GAO M L, WEI Y C, ZHAO L. Nature of Cu Species in Cu-SAPO-18 catalyst for NH3-SCR:Combination of experiments and DFT calculations[J]. J Phys Chem C, 2016, 120(27):14669-14680. doi: 10.1021/acs.jpcc.6b03464
    [4] 蔺卓玮, 陆强, 唐昊, 李慧, 董长青, 杨勇平.平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J].燃料化学学报, 2017, 45(1):113-122. http://www.cnki.com.cn/article/cjfdtotal-rlhx201701016.htm

    LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. J Fuel Chem Technol, 2017, 45(1):113-122. http://www.cnki.com.cn/article/cjfdtotal-rlhx201701016.htm
    [5] HUSNAIN N, WANG E L, LI K, ANWAR M T, MEHMOOD A, GUL M, LI D L, MAO J D. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Rev Chem Eng, 2018, 35(2):239-264. doi: 10.1515/revce-2017-0064
    [6] 王芳, 姚桂焕, 归柯庭.铁基催化剂选择性催化还原烟气脱硝特性比较研究[J].中国电机工程学报, 2009, 29(29):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200929009

    WANG Fang, YAO Gui-huan. GUI Ke-ting. Comparison about selective catalytic reduction of de-NOx on iron-based magnetic materials[J]. Proc CSEE, 2009, 29(29):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200929009
    [7] LIANG H, GUI K T, ZHA X B. DRIFTS study of γFe2O3 nano-catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Can J Chem Eng, 2016, 94(9):1668-1675. doi: 10.1002/cjce.22546
    [8] 彭建升, 王栋, 张信莉, 路春美, 牛胜利, 李婧, 徐丽婷.磁性γ-Fe2O3催化剂NH3-SCR脱硝反应动力学研究[J].中国电机工程学报, 2015, 35(18):4690-4696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518015

    PENG Jian-sheng, WANG Dong, ZHANG Xin-li, LU Chun-mei, NIU Sheng-li, LI Jing, XU Li-ting. Kinetic study of selective catalytic reduction of NOx by NH3 on magnetic γ-Fe2O3 catalyst[J]. Proc CSEE, 2015, 35(18):4690-4696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518015
    [9] YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, YUE P, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:Mechanism and structure-activity relationship[J]. Appl Catal B:Environ, 2012, 117-118:73-80. doi: 10.1016/j.apcatb.2012.01.001
    [10] 王栋, 吴惊坤, 牛胜利, 路春美, 徐丽婷, 于贺伟, 李婧. Sn, Ti掺杂改性γ-Fe2O3催化剂结构及NH3-SCR脱硝活性研究[J].燃料化学学报, 2015, 43(7):876-883. http://www.ccspublishing.org.cn/article/id/100033375

    WANG Dong, WU Jing-kun, NIU Sheng-li, LU Chun-mei, XU Li-ting, YU He-wei, LI Jing. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. J Fuel Chem Technol, 2015, 43(7):876-883. http://www.ccspublishing.org.cn/article/id/100033375
    [11] LU W, CUI S P, GUO H X. Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2(100) through density functional theory (DFT):Improvement of sulfur poisoning resistance[J]. Mol Catal, 2018, 459:31-37. doi: 10.1016/j.mcat.2018.08.020
    [12] LIU Z M, MA L L, JUNAID A S M. NO and NO2 adsorption on Al2O3 and Ga modified Al2O3 surfaces:A density functional theory study[J]. J Phys Chem C, 2010, 114(10):4445-4450. doi: 10.1021/jp907925w
    [13] ZHANG X P, LI Z F, ZHAO J J, CUI Y Z, TAN B J, WANG J X, ZHANG C X, HE G H. Mechanism of Ce promoting SO2 resistance of MnOx/γ-Al2O3:An experimental and DFT study[J]. Korean J Chem Eng, 2017, 34(7):1-7. doi: 10.1007/s11814-017-0092-3
    [14] REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3 (001) surface with density functional theory[J]. Appl Surf Sci, 2019, 487:171-179. doi: 10.1016/j.apsusc.2019.04.250
    [15] REN D D, GUI K T, GU S C, WEI Y L. Study of the nitric oxide reduction of SCR-NH3 on γ-Fe2O3 catalyst surface with quantum chemistry[J]. Appl Surf Sci, 2020, 509:144659. doi: 10.1016/j.apsusc.2019.144659
    [16] JΦRGENSEN J E, MOSEGAARD L, THOMSEN L E, JENSEN T R, HANSON J C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering:An in situ X-ray powder diffraction study[J]. J Solid State Chem, 2007, 180(1):180-185. http://www.sciencedirect.com/science/article/pii/S0022459606005342
    [17] JIAN W, WANG S P, ZHANG H X, BAI F Q. Disentangling the role of oxygen vacancies on the surface of Fe3O4 and γ-Fe2O3[J]. Inorg Chem Front, 2019, 6(10):2660-2666. doi: 10.1039/C9QI00351G
    [18] BAETZOLD R C, YANG H. Computational study on surface structure and crystal morphology of γ-Fe2O3:Toward deterministic synthesis of nanocrystals[J]. J Phys Chem B, 2003, 107(51):14357-14364. doi: 10.1021/jp035785k
    [19] GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal:Results of density functional theory study[J]. Appl Surf Sci, 2010, 256(23):6991-6996. doi: 10.1016/j.apsusc.2010.05.013
    [20] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:Ideas, illustrations and the CASTEP code[J]. J Phys-Condens Matter, 2002, 14(11):2717. doi: 10.1088/0953-8984/14/11/301
    [21] HUBER K P, HERZBERG G. Molecular spectra and molecular structure:Ⅳ. Constants of diatomic molecules[M]. New York:Springer Science & Business Media, 2013.
    [22] 李淑萍, 孟江, 王继刚. NO在金属Ben(n=2-12)团簇表面的平行吸附[J].原子与分子物理学报, 2019, 36(2):240-245. http://www.cnki.com.cn/Article/CJFDTotal-YZYF201902011.htm

    LI Shu-ping, MENG Jiang, WANG Ji-gang. Parallel adsorption for NO on the surfaces of Ben (n=2-12) clusters[J]. J At Mol Phys, 2019, 36(2):240-245. http://www.cnki.com.cn/Article/CJFDTotal-YZYF201902011.htm
    [23] LIDE D R. CRC Handbook of Chemistry and Physics[M]. 81st. Boca Raton:CRC Press, 2000.
    [24] LYU Z K, NIU S L, LU C M, ZHAO G J, GONG Z Q, ZHU Y. A density functional theory study on the selective catalytic reduction of NO by NH3 reactivity of α-Fe2O3 (001) catalyst doped by Mn, Ti, Cr and Ni[J]. Fuel, 2020, 267:117147. doi: 10.1016/j.fuel.2020.117147
    [25] BENTARCURT Y L, CALATAYUD M, KLAPP J, RUETTE F. Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties[J]. Surf Sci, 2018, 677:239-253. doi: 10.1016/j.susc.2018.06.005
    [26] 张倩. NH3及NO在Fe掺杂MnO2(110)表面吸附行为的密度泛函理论研究[D].太原: 太原理工大学, 2015.

    ZHANG Qian. DFT study of NH3 and NO adsorption behavior on Fe doping MnO2(110) surface[D]. Taiyuan: Taiyuan University of Technology, 2015.
    [27] 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO (100)表面吸附甲醇影响的分子模拟[J].燃料化学学报, 2020, 48(2):172-178. http://www.ccspublishing.org.cn/article/id/798fb962-9661-4838-b806-274ba783fec8

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol, 2020, 48(2):172-178. http://www.ccspublishing.org.cn/article/id/798fb962-9661-4838-b806-274ba783fec8
    [28] YUAN R M, FU G, XU X, WAN H L. Brønsted-NH4+ mechanism versus nitrite mechanism:new insight into the selective catalytic reduction of NO by NH3[J]. Phys Chem Chem Phys, 2011, 13(2):453-460. doi: 10.1039/C0CP00256A
    [29] 胡海鹏, 王学涛, 张兴宇, 苏晓昕, 杨晓东, 史瑞华. Fe-Cu/ZSM-5催化剂的NH3-SCR脱硝性能[J].燃料化学学报, 2018, 46(2):225-232. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fuel-chemistry-technology_thesis/0201247838694.html

    HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the deNOx process via NH3-SCR[J]. J Fuel Chem Technol, 2018, 46(2):225-232. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fuel-chemistry-technology_thesis/0201247838694.html
    [30] 梁辉, 查贤斌, 归柯庭. γFe2O3的选择性催化还原脱硝性能及其对NH3和NO的表面吸附行为研究[J].中国电机工程学报, 2014, 34(32):5734-5740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201432006

    LIANG Hui, CHA Xian-bin, GUI Ke-ting. A study of selective catalysis reduction denitration performance and adsorption of NH3 and NO over γFe2O3 catalyst[J]. Proc CSEE, 2014, 34(32):5734-5740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201432006
    [31] YANG S J, CHANG H Z, MA L, QU Z, YAN N Q, WANG C Z, LI J H. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures:NO reduction versus NH3 oxidization[J]. Ind Eng Chem Res, 2013, 52(16):5601-5610. doi: 10.1021/ie303272u
    [32] BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998, 18(1/2):1-36. http://www.sciencedirect.com/science/article/pii/S092633739800040X
    [33] 厉志鹏, 牛胜利, 韩奎华, 路春美.掺杂改性对钙铝基复合物酯交换催化剂吸附性能影响的分子模拟[J].化工学报, 2020, 71(8):3625-3632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202008024

    LI Zhi-peng, NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Molecular simulation of the effect of doping modification on the adsorption properties of calcium-aluminum-based composites ester exchange catalysts[J]. CIESC, 2020, 71(8):3625-3632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202008024
    [34] GUO M Y, ZHAO P P, LIU Q L, LIU C X, HAN J F, JI N, SONG C F, MA D G, LU X B, LIANG X Y, LI Z G. Improved low-temperature activity and H2O resistance of Fe-doped Mn-Eu catalysts for NO removal by NH3-SCR[J]. ChemCatChem, 2019, 11(19):4954-4965. doi: 10.1002/cctc.201900979
    [35] TRONCONI E, NOVA I, CIARDELLI C, CHATTERJEE D, WEIBEL M. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. J Catal, 2007, 245(1):1-10. http://www.sciencedirect.com/science/article/pii/S002195170600323X
    [36] 戚飞鸿. Fe-Ti尖晶石低温SCR性能的改进[D].南京: 南京理工大学, 2016.

    QI Fei-hong. Improvement of the activity of Fe-Ti spinel for the selective catalytic reduction of NO with NH3 at low temperatures[D]. Nanjing: Nanjing University of Science and Technology, 2016.
    [37] 杜晓瑞.铁基尖晶石催化NO还原的实验与机理研究[D].武汉: 华中科技大学, 2019.

    DU Xiao-rui. Experimental and mechanistic studies on catalytic reduction of NO by iron-based spinel[D]. Wuhan: Huazhong University of Science and Technology, 2019.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  185
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-09-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回