留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱处理HZSM-5分子筛在线催化提质生物油

张瑾 李小华 董良秀 王嘉骏 刘莎 蔡忆昔 邵珊珊 张小雷 胡超

张瑾, 李小华, 董良秀, 王嘉骏, 刘莎, 蔡忆昔, 邵珊珊, 张小雷, 胡超. 碱处理HZSM-5分子筛在线催化提质生物油[J]. 燃料化学学报(中英文), 2017, 45(7): 828-836.
引用本文: 张瑾, 李小华, 董良秀, 王嘉骏, 刘莎, 蔡忆昔, 邵珊珊, 张小雷, 胡超. 碱处理HZSM-5分子筛在线催化提质生物油[J]. 燃料化学学报(中英文), 2017, 45(7): 828-836.
ZHANG Jin, LI Xiao-hua, DONG Liang-xiu, WANG Jia-jun, LIU Sha, CAI Yi-xi, SHAO Shan-shan, ZHANG Xiao-lei, HU Chao. Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 828-836.
Citation: ZHANG Jin, LI Xiao-hua, DONG Liang-xiu, WANG Jia-jun, LIU Sha, CAI Yi-xi, SHAO Shan-shan, ZHANG Xiao-lei, HU Chao. Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 828-836.

碱处理HZSM-5分子筛在线催化提质生物油

基金项目: 

国家自然科学基金 51276085

江苏省高校优势学科建设项目 PDPA

详细信息
    通讯作者:

    李小华, Tel: 1381548267, E-mail: lixiaohua@ujs.edu.cn

  • 中图分类号: TQ35

Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites

Funds: 

the National Natural Science Foundation of China 51276085

the Priority Academic Program Development of Jiangsu Higher Education Institutions PDPA

  • 摘要: 采用NaOH溶液对HZSM-5分子筛进行碱处理,利用XRD、SEM、BET、Py-FTIR四种方法表征改性HZSM-5分子筛,对生物原油有机相、未改性HZSM-5制得生物油有机相与改性HZSM-5制得生物油有机相进行理化特性及成分分析,研究了碱处理HZSM-5分子筛对生物油有机相产物的影响;对使用了120 min的三种失活催化剂进行了热重分析,并对焦炭峰面积进行了积分计算。结果表明,经过碱处理后的HZSM-5分子筛保留了典型的MFI拓扑结构,形成了一定数量的介孔;同时,经碱处理1 h的HZSM-5分子筛催化制得的生物油有机相产物的产率有所增加且理化特性得到提高,其产物中烃类物质的含量显著增加,达到了37.67%,且以单环芳香烃为主;同时改性HZSM-5分子筛对生物油有机相中的酸、醛及酮类物质均有较好的脱除效果,有效地降低了生物油的腐蚀性并提升了生物油的稳定性,热值达到了35.32 MJ/kg;经1 h碱处理的HZSM-5分子筛的总结焦量明显降低。
  • 图  1  生物质真空热解及在线催化提质系统示意图

    Figure  1  Schematic diagram of vacuum pyrolysis and catalytic upgrading system

    1: electronic controller; 2: catalytic reactor; 3: filter; 4: globe valve; 5: nitrogen cylinder; 6: gas collector; 7: vacuum pump; 8: voltage regular tube; 9: cooling tower; 10: bio-oil collector; 11: cold trap; 12: pyrolysis reactor

    图  2  碱处理后HZSM-5的扫描电镜照片

    Figure  2  SEM images of alkali-treated HZSM-5 zeolite catalysts

    (a): HZSM-5-1(20 μm); (b): HZSM-5-2(20 μm); (c): HZSM-5-1(2 μm); (d): HZSM-5-2(2 μm)

    图  3  HZSM-5改性前后的XRD谱图

    Figure  3  XRD patterns of HZSM-5 and alkali-treated HZSM-5 zeolite catalysts

    图  4  HZSM-5改性前后的吡啶红外光谱谱图

    Figure  4  Py-FTIR spectra of pyridine adsorption on HZSM-5 and alkali-treated HZSM-5 zeolite catalysts

    图  5  不同催化剂催化所得热解产物的分布

    Figure  5  Product distribution with different zeolite catalysts

    图  6  不同催化剂催化所得有机相产物的分布

    Figure  6  Organic phase product distribution with different zeolite catalysts

    图  7  不同催化剂催化所得含氧化合物的氧原子分布

    Figure  7  Oxygen atom distribution of oxygen-contained compound with different zeolite catalysts

    图  8  不同催化剂催化所得烃类物质的分布

    Figure  8  Hydrocarbon compound distribution with different zeolite catalysts distribution with different zeolite catalysts

    图  9  不同催化剂催化所得烃类产物的碳原子分布

    Figure  9  Carbon atom distribution of hydrocarbons with different zeolite catalysts

    图  10  结焦催化剂的TG和DTG曲线

    Figure  10  TG and DTG curves of deactivated catalysts

    表  1  油菜秸秆的元素分析和工业分析

    Table  1  Ultimate and proximate analysis of rape straw

    表  2  HZSM-5及改性HZSM-5表面物理特性

    Table  2  Physical properties of the HZSM-5 and modified HZSM-5 catalysts

    表  3  生物油有机相的理化特性

    Table  3  Physicochemical properties of bio-oil organic phase using different zeolite catalysts

    表  4  不同失活HZSM-5催化剂的焦炭含量

    Table  4  Coke content of different activated HZSM-5 catalysts

  • [1] 徐莹, 王铁军, 马隆龙, 张琦, 陈冠益.真空热解松木粉制备生物油[J].农业工程学报, 2013, 29(1):196-201. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201301028.htm

    XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, CHEN Guan-yi. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Trans Chin Soc Agric Eng, 2013, 29(1):196-201. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201301028.htm
    [2] 朱锡锋.生物质热解液化技术研究与发展趋势[J].新能源进展, 2013, 1(1):32-37. http://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201301004.htm

    ZHU Xi-feng. Research development of biomass fast pyrolysis[J]. J Circ Syst, 2013, 1(1):32-37. http://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201301004.htm
    [3] El-BABARY M H, PHILIP H S, LEONARD I. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood[J]. Appl Biochem Biotechnol, 2009, 154(1):3-13. http://www.cabdirect.org/abstracts/20093132892.html
    [4] NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197:252-261. doi: 10.1016/j.micromeso.2014.06.027
    [5] 郭晓亚, 颜涌捷.生物质快速裂解油的催化裂解精制[J].化学反应工程与工艺, 2005, 21(3):227-233. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY200503008.htm

    GUO Xiao-Ya, YAN Yong-jie. Study on catalytic cracking of bio-oil pyrolyzed from biomass[J]. Chem React Eng Technol, 2005, 21(3):227-233. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFY200503008.htm
    [6] GROEN J C, ZHU W, BROUWER S, HUYNINK S, KAPTEIJN F, MOULIJN J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007, 129(2):355-360. doi: 10.1021/ja065737o
    [7] 彭鹏, 张占全, 王有和, FAZLE S, 阎子峰.多级孔分子筛的制备与催化应用[J].化学进展, 2013, 25(12):2029-2037. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201312005.htm

    PENG Peng, ZHANG Zhan-quan, WANG You-he, FAZLE S, YAN Zi-feng. Hierarchical molecular sieves:Synthesis and catalytic applications[J]. Prog Chem, 2013, 25(12):2029-2037. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201312005.htm
    [8] SOHRAB F, MORTEZA S, CAVUS F. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014, 116(2014):529-537. http://www.sciencedirect.com/science/article/pii/S0016236113007643
    [9] WEI Y, PETRA E, DAVID J L, MATTEO L M, GLENN J, KRIJN P. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation[J]. Appl Catal A:Gen, 2015, 504:211-219. doi: 10.1016/j.apcata.2014.12.027
    [10] 樊永胜, 蔡忆昔, 李小华, 俞宁, 尹海云.油菜秸秆真空热解蒸气在线催化提质研究[J].农业机械学报, 2014, 45(12):234-240. doi: 10.6041/j.issn.1000-1298.2014.12.035

    FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, YU Ning, YIN Hai-yun. Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Trans Chin Soc Agric Mach, 2014, 45(12):234-240. doi: 10.6041/j.issn.1000-1298.2014.12.035
    [11] FAN Y S, CAI Y X, LI X H, YIN H Y, YU N. R ape straw as a source of bio-oil via vacuum pyrolysis:Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J]. J Anal Appl Pyrolysis, 2014, 106(3):63-70. http://www.cabdirect.org/abstracts/20143156265.html
    [12] FU T, ZHOU H, LI Z. Effect of particle morphology for ZSM-5 zeolite on the catalytic conversion of methanol to gasoline-range hydrocarbons[J]. Catal Lett, 2016, 146(10):1973-1983. doi: 10.1007/s10562-016-1841-3
    [13] 杨雅, 郭庆杰, 杨林, 张亮, 王许云, 张秀丽.碱脱硅改性的HZSM-5分子筛催化裂解小球藻的研究[J].太阳能学报, 2016, 37(1):171-177. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201601027.htm

    YANG Ya, GUO Qing-jie, YANG Lin, ZHANG Liang, WANG Xu-yun, ZHANG Xiu-li. Catalytic cracking of chlorella over HZSM-5 zeolite modified by desilication in alkalille medium[J]. Acta Energ Sin, 2016, 37(1):171-177. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201601027.htm
    [14] 许庆利, 赵军, 李洪宇, 王复, 颜涌捷.生物油催化裂解精制机理[J].沈阳大学学报(自然科学版), 2012, 24(2):15-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDA201202006.htm

    XU Qing-li, ZHAO Jun, LI Hong-yu, WANG Fu, YAN Yong-jie. Catalytic cracking of bio-oil upgrading mechanism[J]. J Shenyang Univ, 2012, 24(2):15-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDA201202006.htm
    [15] AHO A, KUMAR N, LASHKUL A V, ERANEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B. Catalytic upgrading of woody biomass derived pyrolysis vapors over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010, 89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009
    [16] ZHANG L H, XU C B, PASCALE C. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energ Convers Manage, 2010, 251(5):969-982. http://www.sciencedirect.com/science/article/pii/S0196890409004889
    [17] 郭春垒, 方向晨, 贾立明, 刘全杰, 张喜文, 赵晓东.分子筛重整催化剂研究进展[J].化工进展, 2012, 31(4):825-832. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201204019.htm

    GUO Chun-Lei, FANG Xiang-chen, JIA Li-ming, LIU Quan-jie, ZHAO Xiao-dong. Development of zeolitic reforming catalyst[J]. Prog Chem, 2012, 31(4):825-832. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201204019.htm
    [18] WANG J, GRONE J C. Facile synthesis of ZSM-5 composites with hierarchical poposity[J]. J Mater Chem, 2008, 18(4):468-478. doi: 10.1039/B711847C
    [19] 樊永胜. 生物质真空热解及催化转化制备生物油的基础研究[D]. 江苏: 江苏大学, 2016.

    FAN Yong-sheng. Basic study on vacuum pyrolysis and catalytic transformation of biomass for preparation of bio-oil[D]. Jiangsu:Jiangsu University, 2016.
    [20] KUZNETSOV B N. Deactivation of catalysts for fossil coal and biomass conversion[J]. Catal Ind, 2009, 1(3):250-259. doi: 10.1134/S2070050409030143
    [21] BEATRIZ V, CASTA O P, OLAZAR M, BILBAO J, GAYUBO A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal, 2012, 285(1):304-314. doi: 10.1016/j.jcat.2011.10.004
    [22] SEO G, KIM J H, JANG H G. Methanol-to-olefin conversion over zeolite catalysts:Active intermediates and deactivation[J]. Catal Surv Asia, 2013, 17(3):103-118. doi: 10.1007/s10563-013-9157-4
    [23] DANOV S M, ESIPOVICH A L, BELOUSOV A S, ROGOZHIN A E. Deactivation of acid catalysts in vapor-phase dehydration of glycerol into acrolein[J]. Russ J Appl Chem, 2014, 87(4):461-467. doi: 10.1134/S10704272140400119
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  47
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 修回日期:  2017-04-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回