留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究

林敏 纳薇 叶海船 霍海辉 高文桂

林敏, 纳薇, 叶海船, 霍海辉, 高文桂. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1214-1225.
引用本文: 林敏, 纳薇, 叶海船, 霍海辉, 高文桂. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1214-1225.
LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.
Citation: LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.

不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究

基金项目: 

国家自然科学基金 51404122

国家自然科学基金 51304099

国家科技支撑计划 2011BAC01B03

详细信息
  • 中图分类号: O643.3

Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol

Funds: 

the Natural Science Foundation of China 51404122

the Natural Science Foundation of China 51304099

the Natural Key Technologies R & D Program of China 2011BAC01B03

More Information
  • 摘要: 以硅质骨架结构介孔分子筛SBA-15为载体,采用浸渍法合成CuO-ZnO/SBA-15(CZ/SBA-15)、CuO-ZnO-MnO2/SBA-15(CZM/SBA-15)、CuO-ZnO-ZrO2/SBA-15(CZZ/SBA-15)三组多孔催化剂,在固定床反应器上评价了各组催化剂催化CO2加氢合成甲醇的性能,同时结合N2吸附-脱附(BET)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、程序升温脱附(H2-TPD、CO2-TPD)、N2O滴定、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等表征研究了不同助剂对CO2催化加氢制甲醇的影响。结果表明,催化剂中的金属氧化物改变了SBA-15分子筛载体的孔径大小和比表面积;催化剂CuO-ZnO-MnO2/SBA-15、CuO-ZnO-ZrO2/SBA-15中铜的分散度(DCu)和比表面积(ACu)更大,表面CuO粒径更小,更易被还原;相比Mn-O簇,Zr-O簇为增强了碱性位点,提高了甲醇选择性。此外,CuO-ZnO-ZrO2/SBA-15具有更高的氧空位浓度,催化活性更好,其甲醇选择性为25.02%,与CuO-ZnO/SBA-15、CuO-ZnO-MnO2/SBA-15相比分别提高了28%和136.9%,催化效果最好。
  • 图  1  催化剂的XRD谱图

    Figure  1  XRD patterns of the catalyst

    (a): low-angle XRD pattern of SBA-15; (b): wide-angle XRD patterns of SBA-15; (c): wide-angle XRD patterns of the catalysts; (d): wide-angle XRD of the catalysts after reduction

    图  2  催化剂的N2吸附-脱附等温线

    Figure  2  N2 adsorption-desorption isotherm of the catalyst

    图  3  催化剂的H2-TPR谱图

    Figure  3  H2-TPR patterns of the catalyst

    图  4  催化剂的H2-TPD和CO2-TPD谱图

    Figure  4  H2-TPD (a) and CO2-TPD (b) patterns of the catalyst

    图  5  催化剂的XPS谱图

    Figure  5  XPS spectra of the catalyst

    (a): full spectra; (b): O 1s; (c): Cu 2p; (d): Zn 2p; (e): Mn 2p; (f): Zr 3d

    图  6  催化剂的TEM照片

    Figure  6  TEM images of the catalyst

    (a): C/SBA-15; (b): CZ/SBA-15; (c): CZM/SBA-15; (d): CZZ/SBA-15; (e): energy spectrum of CZM/SBA-15; (f): energy spectrum of CZZ/SBA-15

    表  1  还原后催化剂中Cu的晶粒粒径

    Table  1  Grain size of Cu in the catalyst after reduction

    Sample C/SBA-15 CZ/SBA-15 CZM/SBA-15 CZZ/SBA-15
    dCua/nm 19.8 18.9 17.8 15.4
    a: the crystallite size of Cu NPs was calculated by Scherrer′s equation, where 2θ= 43.3°, 50.5°, 74.2°
    下载: 导出CSV

    表  2  催化剂的物性参数表

    Table  2  Physical property parameter table of the catalyst

    Sample ABET/(m2·g-1) vporea/(cm3·g-1) dpore/nm DCu/% ACu/(m2·g-1)
    SBA-15 863.25 1.17 7.41 - -
    CZ/SBA-15 382.96 0.60 6.27 7.80 52.6
    CZM/SBA-15 412.87 0.65 6.24 11.4 77.3
    CZZ/SBA-15 387.60 0.54 5.57 19.6 133.2
    a: total pore volume obtained from p/p0= 0.99
    下载: 导出CSV

    表  3  催化剂的吸附性能参数

    Table  3  Catalysts adsorption performance parameters

    Sample H2-TPD CO2-TPD
    maximum desorption temperature t/℃ area maximum desorption temperature t/℃ area
    CZ/SBA-15 479 6415 149 183
    470 1736
    CZM/SBA-15 476 7485 138 118
    473 1988
    CZZ/SBA-15 480 7262 141 159
    488 2253
    下载: 导出CSV

    表  4  催化剂中各元素的XPS分峰数据

    Table  4  XPS peak data of each element in the catalyst

    Sample E /eV E /eV E /eV O 1s /% O/(O+ O)
    Cu 2p3/2 Cu 2p1/2 Mn 2p3/2 Mn 2p1/2 Zr 2p5/2 Zr 2p3/2 O O O
    CZ/SBA-15 933.1 953.1 - - - - 22.8 42.2 35 0.53
    CZM/SBA-15 933.1 953.1 641.6 654.1 - - 22.4 47.4 30.2 0.43
    CZZ/SBA-15 933.1 953.1 - - 182.4 184.8 20 42.4 37.6 0.60
    下载: 导出CSV

    表  5  催化剂的催化性能评价

    Table  5  Catalytic performance evaluation of catalysts

    Catalyst xCO2/% sCH3OH/% sCO/% wCH3OH/(mmol·g-1·h-1)
    CZ/SBA-15 8.7 19.54 80.46 0.42
    CZM/SBA-15 8.2 10.56 89.40 0.25
    CZZ/SBA-15 8.1 25.02 74.97 0.99
    reaction condition: t=250 ℃, p=3 MPa, H2/CO2 (volume ratio)=3:1, SV=6000 mL/(g·h)
    下载: 导出CSV
  • [1] 唐宏青.煤化工工艺技术评述与展望——Ⅰ.煤气化技术[J].燃料化学学报, 2001, 29(1): 1-5. doi: 10.3969/j.issn.0253-2409.2001.01.001

    TANG Hong-qing. Review and prospect of coal chemical process technology Ⅰ. Coal gasification technology[J]. J Fuel Chem Technol, 2001, 29(1): 1-5. doi: 10.3969/j.issn.0253-2409.2001.01.001
    [2] LE H V, PARISHAN S, SAGALTCHIK A, AHI H, TRUNSCHKE A, SCHOM-CKER R, THOMAS A. Stepwise methane-to-methanol conversion on CuO/SBA-15[J]. Chem-Eur J, 2018, 24(48): 12592-12599. doi: 10.1002/chem.201801135
    [3] 赵信国, 刘广绪.海洋酸化对海洋无脊椎动物的影响研究进展[J].生态学报, 2015, 35(7): 2388-2398. http://d.old.wanfangdata.com.cn/Periodical/stxb201507038

    ZHAO Xin-guo, LIU Guang-xu. Advances in the effects of ocean acidification on marine invertebrates[J]. Acta Ecol Sin, 2015, 35(7): 2388-2398. http://d.old.wanfangdata.com.cn/Periodical/stxb201507038
    [4] CARRADO K A, KIM J H, SONG C S, CASTAGNOLA N, MARSHALL C L, SCHWARTZ M M. HDS and deep HDS activity of CoMoS-mesostructured clay catalysts[J]. Catal Today, 2006, 116(4): 478-484. doi: 10.1016/j.cattod.2006.06.033
    [5] RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, TERRILL J B, ATIYEH H K, HUHNKE R L. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Appl Energy, 2013, 112: 289-299. doi: 10.1016/j.apenergy.2013.06.017
    [6] TURSUNOV O, KUSTOV L, TILYABAEV Z. Methanol synthesis from the catalytic hydrogenation of CO2 over CuO-ZnO supported on aluminum and silicon oxides[J]. J Taiwan Inst Chem E, 2017, 78: 416-422. doi: 10.1016/j.jtice.2017.06.049
    [7] HAYWARD J S, SMITH P J, KONDRAT S A, BOWKER M, HUTCHINGS G J. The effects of secondary oxides on copper-based catalysts for green methanol synthesis[J]. ChemCatChem, 2017, 9: 1655-1662. doi: 10.1002/cctc.201601692
    [8] JADHAV S G, VAIDYA P D, BHANAGE B M, JOSHI J B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chem Eng Res Des, 2014, 92(11): 2557-2567. doi: 10.1016/j.cherd.2014.03.005
    [9] LI Y, CHAN S H, SUN Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review[J]. Nanoscale, 2015, 7(19): 8663-8683. doi: 10.1039/C5NR00092K
    [10] ALI K A, ABDULLAH A Z, MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review[J]. Renewable Sustainable Energy Rev, 2015, 44: 508-518. doi: 10.1016/j.rser.2015.01.010
    [11] ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007, 249(2): 185-194. doi: 10.1016/j.jcat.2007.04.003
    [12] BONURA G, ARENA F, MEZZATESTA G, CANNILLA C, SPADARO L, FRUSTERI F. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction[J]. Catal Today, 2011, 171(1): 251-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d742b83da551833422b9beda956ec9c2
    [13] KOH M K, KHAVARIAN M, CHAI S P, MOHAMED A R. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol[J]. Int J Hydrogen Energy, 2018, 43(19): 9334-9342. doi: 10.1016/j.ijhydene.2018.03.202
    [14] KOIZUMI N, JIANG X, KUGAI J, SONG C. Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis[J]. Catal Today, 2012, 194(1): 16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a53c75a8f655b6c903ca46e7d498ee9
    [15] NANDIYANTO A B D, KIM S G, ISKANDAR F, OKUYAMA K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters[J]. Microporous Mesoporous Mater, 2009, 120(3): 447-453. doi: 10.1016/j.micromeso.2008.12.019
    [16] DOS SANTOS S M L, NOGUEIRA K A B, DE SOUZA GAMA M, DINIZ FERREIRA LIMA J, JOSÉ DA SILVA J ÚNIOR I, CRISTINA SILVA DE AZEVEDO D. Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules[J]. Microporous Mesoporous Mater, 2013, 180: 284-292. doi: 10.1016/j.micromeso.2013.06.043
    [17] PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, NUMPILAI T, POO-ARPORN Y, LIMPHIRAT W, DONPHAI W, DITTANET P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: Effects of SiO2 contents[J]. Chem Eng J, 2017, 316: 692-703. doi: 10.1016/j.cej.2017.02.010
    [18] TOYIR J, DE LA PISCINA P R, FIERRO J L G, HOMS N. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl Catal B: Environ, 2001, 34(4): 255-266. doi: 10.1016/S0926-3373(01)00203-X
    [19] CHEN C S, LAI Y T, LAI T W, WU J H, CHEN C H, LEE J F, KAO H M. Formation of Cu nanoparticles in SBA-15 functionalized with carboxylic acid groups and their application in the water-gas shift reaction[J]. ACS Catal, 2013, 3(4): 667-677. doi: 10.1021/cs400032e
    [20] JOHANSSON E M, BALLEM M A, CÓRDOBA J M, ODÉN M. Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores[J]. Langmuir, 2011, 27(8): 4994-4999. doi: 10.1021/la104864d
    [21] BJÖRK E M, SÖDERLIND F, ODÉN M. Tuning the shape of mesoporous silica particles by alterations in parameter space: from rods to platelets[J]. Langmuir, 2013, 29(44): 13551-13561. doi: 10.1021/la403201v
    [22] BRODIE-LINDER N, DOSSEH G, ALBA-SIMONESCO C, AUDONNET F, IMPÉROR-CLERC M. SBA-15 synthesis: Are there lasting effects of temperature change within the first 10 min of TEOS polymerization?[J]. Mater Chem Phys, 2008, 108(1): 73-81. http://cn.bing.com/academic/profile?id=2afd85e6a20c695e1a28c2bed0cd725f&encoded=0&v=paper_preview&mkt=zh-cn
    [23] JOHANSSON E M, CÓRDOBA J M, ODÉN M. The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15[J]. Microporous Mesoporous Mater, 2010, 133(1/3): 66-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=626f4a402001f9d48069585f68e118d3
    [24] SANTOS S M L, CECILIA J A, VILARRASA-GARCÍA E, SILVA JUNIOR I J, RODRÍGUEZ-CASTELLON E, AZEVEDO D C S. The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption[J]. Microporous Mesoporous Mater, 2016, 232: 53-64. doi: 10.1016/j.micromeso.2016.06.004
    [25] WEN C, CUI Y, DAI W L, XIE S, FAN K. Solvent feedstock effect: The insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chem Commun, 2013, 49(45): 5195-5197. doi: 10.1039/c3cc40570b
    [26] YE R P, LIN L, LI Q, ZHOU Z, WANG T, RUSSELL C K, ADIDHARMA H, XU Z, YAO Y G, FAN M. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon-oxygen bonds[J]. Catal Sci Technol, 2018, 8(14): 3428-3449. doi: 10.1039/C8CY00608C
    [27] 李志雄, 纳薇, 王华, 高文桂. Cu-Zn-Zr/SBA-15介孔催化剂的制备及CO2加氢合成甲醇的催化性能[J].高等学校化学学报, 2014, 35(12): 2616-2623. doi: 10.7503/cjcu20140684

    LI Zhi-xiong, NA Wei, WANG Hua, GAO Wen-gui. Preparation of Cu-Zn-Zr/SBA-15 mesoporous catalyst and catalytic performance of CO2 hydrogenation to methanol[J]. Chem Res Chin Univ, 2014, 35(12): 2616-2623. doi: 10.7503/cjcu20140684
    [28] SŁOCZY'NSKI J, GRABOWSKI R, OLSZEWSKI P, KOZŁOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006, 310: 127-137. doi: 10.1016/j.apcata.2006.05.035
    [29] SŁOCZY'NSKI J, GRABOWSKI R, KOZŁOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003, 249(1): 129-138. doi: 10.1016/S0926-860X(03)00191-1
    [30] BEHRENS M, STUDT F, KASATKIN I, KVHL S, HÄVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NØRSKOV J K, SCHLÖGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. doi: 10.1126/science.1219831
    [31] ZHU Y, SHI L. Zn promoted Cu-Al catalyst for hydrogenation of ethyl acetate to alcohol[J]. J Ind Eng Chem, 2014, 20(4): 2341-2347. doi: 10.1016/j.jiec.2013.10.010
    [32] 阴秀丽, 常杰, 汪俊锋, 付严, 梁耀彰. Cu/Zn/Al/Mn催化剂上CO/CO2加氢合成甲醇特性研究[J].燃料化学学报, 2004, 32(4): 492-497. doi: 10.3969/j.issn.0253-2409.2004.04.021

    YIN Xiu-li, CHANG Jie, WANG Jun-feng, FU Yan, LIANG Yao-zhang. Study on characteristics of methanol synthesis by CO/CO2 hydrogenation over Cu/Zn/Al/Mn catalysts[J]. J Fuel Chem Technol, 2004, 32(4): 492-497. doi: 10.3969/j.issn.0253-2409.2004.04.021
    [33] HAO A X, YU Y, CHEN H B, MAO C P, WEI S X, YIN Y S. Effect of surface promoters-modifying on catalytic performance of Cu/ZnO/Al2O3 methanol synthesis catalyst[J]. Acta Phys-Chim Sin, 2013, 29(9): 2047-2055. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201309027
    [34] WANG G, ZUO Y, HAN M, WANG J. Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn[J]. React Kinet Mech Catal, 2010, 101(2): 443-454. doi: 10.1007/s11144-010-0240-9
    [35] WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J, 2016, 293: 327-336. doi: 10.1016/j.cej.2016.02.069
    [36] ATAKAN A, KERAUDY J, MÄKIE P, HULTEBERG C, BJÖRK E M, ODÉN M. Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation[J]. J Colloid Interface Sci, 2019, 546: 163-173. doi: 10.1016/j.jcis.2019.03.046
    [37] MADEJ-LACHOWSKA A, KASPRZYK-MRZYK A, MOROZ H, LACHOWSKI A I, WYZGOŁ H. Synteza metanolu z ditlenku w gla i wodoru na bazie katalizatora CuO/ZnO/ZrO2 z dodatkami[J]. Chemik, 2014, 68(1).
    [38] MUNNIK P, WOLTERS M, GABRIELSSON A, POLLINGTON S D, HEADDOCK G, BITTER J H, DE JONGH P E, DE JONG K P. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts[J]. J Phys Chem C, 2011, 115(30): 14698-14706. doi: 10.1021/jp111778g
    [39] MORITZ M, GESZKE-MORITZ M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications[J]. Mater Sci Eng: C, 2015, 49: 114-151. doi: 10.1016/j.msec.2014.12.079
    [40] LIU H, HADJLTAIEF H B, BENZINA M, GALVEZ M E, COSTA P D. Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn)[J]. Int J Hydrogen Energy, 2019, 44(1): 246-255. doi: 10.1016/j.ijhydene.2018.03.004
    [41] LI Y, NA W, WANG H, GAO W. Hydrogenation of CO2 to methanol over Au-CuO/SBA-15 catalysts[J]. J Porous Mater, 2017, 24(3): 591-599. doi: 10.1007/s10934-016-0295-8
    [42] LETTOW J S, HAN Y J, SCHMIDT-WINKEL P, YANG P, ZHAO D, STUCKY G D, YING J Y. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas[J]. Langmuir, 2000, 16(22): 8291-8295. doi: 10.1021/la000660h
    [43] LEI H, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016, 164: 191-198. doi: 10.1016/j.fuel.2015.09.082
    [44] PATHAK T K, KUMAR V, PRAKASH J, PUROHIT L P, SWART H C, KROON R E. Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions[J]. Sens Actuators A, 2016, 247: 475-481. doi: 10.1016/j.sna.2016.07.002
    [45] WANG T, YUAN X, LI S, ZENG L, GONG J. CeO2-modified Au@ SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol[J]. Nanoscale, 2015, 7(17): 7593-7602. doi: 10.1039/C5NR00246J
    [46] WANG J, LIU Q. A simple method to directly synthesize Al-SBA-15 mesoporous materials with different Al contents[J]. Solid State Commun, 2008, 148(11/12): 529-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d1bd15792b826245b0f22f5ffdf4a58
    [47] 琚裕波, 张国强, 李安民, 郑华艳, 李忠. Zn对Cu/AC催化剂甲醇氧化羰基化合成碳酸二甲酯催化性能的影响[J].天然气化工: C1化学与化工, 2015, 40(6): 39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201506008

    JU Yu-bo, ZHANG Cuo-qiang, LI An-ming, ZHENG Hua-yan, LI Zhong. Effect of Zn on catalytic performance of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate[J]. Nat Gas Ind, 2015, 40(6): 39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201506008
    [48] GAO P, LI F, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen, 2013, 468: 442-452. doi: 10.1016/j.apcata.2013.09.026
    [49] HUANG C, CHEN S, FEI X, LIU D, ZHANG Y. Catalytic hydrogenation of CO2 to methanol: Study of synergistic effect on adsorption properties of CO2 and H2 in CuO/ZnO/ZrO2 system[J]. Catalysts, 2015, 5(4): 1846-1861. doi: 10.3390/catal5041846
    [50] ZHAN H, LI F, GAO P, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources, 2014, 251: 113-121. doi: 10.1016/j.jpowsour.2013.11.037
    [51] ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008, 350(1): 16-23. doi: 10.1016/j.apcata.2008.07.028
    [52] 袁野, 纳薇, 王华, 高文桂.载体Al/Si比对Cu-ZnO-ZrO2催化剂上CO2加氢合成甲醇的影响[J].材料导报, 2017, 30(24): 25-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201624006

    YUAN Ye, NA Wei, WANG Hua, GAO Wen-gui. Effect of Al/Si ratio on hydrogenation of CO2 to methanol over Cu-ZnO-ZrO2 catalyst[J]. Mater Rev, 2017, 30(24): 25-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201624006
    [53] 蔡迎春, 丑凌军, 张兵, 赵军, 李树本. Mn-CaO催化剂上甲烷-二氧化碳共活化制C2烃研究Ⅱ.催化剂表征及反应机理研究[J].分子催化, 2005, 19(5): 15-19. http://d.old.wanfangdata.com.cn/Periodical/fzch200505002

    CAI Ying-chun, CHOU Ling-jun, ZHANG Bing, ZHAO Jun, LI Shu-ben. Study on co-activation of methane-carbon dioxide to produce C2 hydrocarbons on Mn-CaO catalyst Ⅱ. Characterization and reaction mechanism of catalysts[J]. J Mol Catal, 2005, 19(5): 15-19. http://d.old.wanfangdata.com.cn/Periodical/fzch200505002
    [54] LIU Y, SUN K, MA H, XU X, WANG X. Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010, 11(10): 880-883. doi: 10.1016/j.catcom.2010.03.014
    [55] KOH M K, WONG Y J, CHAI S P, MOHAMED A R. Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area[J]. J Ind Eng Chem, 2018, 62: 156-165. doi: 10.1016/j.jiec.2017.12.053
    [56] PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. J Catal, 2007, 251(1): 7-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81e252253294135a39a8ea1ebe4c8975
    [57] ZHAO H, LIN M, FANG K, ZHOU J, LIU Z, ZENG G, SUN Y. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015, 5(83): 67630-67637. doi: 10.1039/C5RA13555A
    [58] THUNYARATCHATANON C, LUENGNARUEMITCHAI A, CHAISUWAN T, CHOLLACOOP N, CHEN S, YOSHIMURA Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption[J]. Microporous Mesoporous Mater, 2017, 253: 18-28. doi: 10.1016/j.micromeso.2017.06.015
    [59] TANG Y, CHEN Y, WU Y, ZHENG M, ZHANG C, YANG M, CAO G. Production of mesoporous materials with high hydrothermal stability by doping metal heteroatoms[J]. Microporous Mesoporous Mater, 2016, 224: 420-425. doi: 10.1016/j.micromeso.2015.11.053
    [60] TANG Y, ZONG E, WAN H, XU Z, ZHENG S, ZHU D. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal[J]. Microporous Mesoporous Mater, 2012, 155: 192-200. doi: 10.1016/j.micromeso.2012.01.020
    [61] RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies[J]. J Catal, 2005, 233(1): 198-209. doi: 10.1016/j.jcat.2005.04.026
    [62] RHODES M D, POKROVSKI K A, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part Ⅱ. Transient-response infrared studies[J]. J Catal, 2005, 233(1): 210-220. doi: 10.1016/j.jcat.2005.04.027
    [63] SOUMINI C, SUGUNAN S, HARIDAS S. Copper oxide modified SBA-15 for the selective vapour phase dehydrogenation of cyclohexanol to cyclohexanone[J]. J Porous Mater, 2019, 26(3): 631-640. doi: 10.1007/s10934-018-0658-4
    [64] YANG Y, WANG C, LIU F, SUN X, QIN G, LIU Y, GAO J. Mesoporous electronegative nanocomposites of SBA-15 with CaO-CeO2 for polycarbonate depolymerization[J]. J Mater Sci, 2019, 54(13): 9442-9455. doi: 10.1007/s10853-019-03560-2
    [65] LI H, LI K, WANG H, ZHU X, WEI Y, YAN D, CHENG X, ZHAI K. Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides[J]. Appl Surf Sci, 2016, 390: 513-525. doi: 10.1016/j.apsusc.2016.08.122
    [66] ZENG L, LI K, WANG H, YU H, ZHU X, WEI Y, NING P, SHI C, LUO Y. CO oxidation on Au/α-Fe2O3-hollow catalysts: General synthesis and structural dependence[J]. J Phy Chem C, 2017, 121(23): 12696-12710. doi: 10.1021/acs.jpcc.7b01363
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  234
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2019-09-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回