留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce离子对苯在Y分子筛上吸附扩散行为的影响

张乐 李强 赵越 秦玉才 高雄厚 宋丽娟

张乐, 李强, 赵越, 秦玉才, 高雄厚, 宋丽娟. Ce离子对苯在Y分子筛上吸附扩散行为的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 84-92.
引用本文: 张乐, 李强, 赵越, 秦玉才, 高雄厚, 宋丽娟. Ce离子对苯在Y分子筛上吸附扩散行为的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 84-92.
ZHANG Le, LI Qiang, ZHAO Yue, QIN Yu-cai, GAO Xiong-hou, SONG Li-juan. Effect of Ce ion on adsorption and diffusion behavior of benzene in Y zeolite[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 84-92.
Citation: ZHANG Le, LI Qiang, ZHAO Yue, QIN Yu-cai, GAO Xiong-hou, SONG Li-juan. Effect of Ce ion on adsorption and diffusion behavior of benzene in Y zeolite[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 84-92.

Ce离子对苯在Y分子筛上吸附扩散行为的影响

基金项目: 

国家自然科学基金 21376114

详细信息
    通讯作者:

    宋丽娟, Tel:+86-024-56860658, E-mail:tianhuikele@126.com, lsong56@263.net

  • 中图分类号: TQ426.95

Effect of Ce ion on adsorption and diffusion behavior of benzene in Y zeolite

Funds: 

National Natural Science Foundation of China 21376114

  • 摘要: 采用液相离子交换法制备了不同稀土含量的Y型分子筛(HY、USY和NaY),研究了稀土铈(Ce)阳离子在Y型分子筛上吸附-脱附烃类分子(苯)过程中的作用机理与影响。通过X射线荧光光谱仪(XRF)、智能质量分析仪(IGA)、脱附指数的计算和巨正则蒙特卡罗模拟计算等多种表征计算方法,对引入稀土物种后,Y型分子筛对苯的饱和吸附量、吸附作用力、脱附热力学参数、苯在Y分子筛上的吸附势能分布及扩散行为等方面进行了研究。结果表明,Ce离子对苯在Y分子筛上脱附活化能的降低、吸附作用力的减弱以及吸附态由团聚态向分散态转变等方面具有显著影响,该作用构成了CeY分子筛催化剂在流化催化裂化(FCC)过程中能够优化轻质产品选择性的重要因素。
  • 图  1  实验样品经XRF所测的Ce含量

    Figure  1  Cerium content of the zeolite samples detected by XRF

    图  2  苯在NaY和不同Ce (OH)2+含量CeY上的吸附等温线(符号代表实验数据,实线代表拟合结果)

    Figure  2  Adsorption isotherms of C6H6 in CeY with various amount of Ce (OH)2+and NaY (symbol represents the experimental data; solid lines represent the fitting results)

    图  3  苯在不同CeY分子筛上的脱附指数变化(303K)

    Figure  3  Change of Desorption-Index of benzene in various CeY zeolites (303K)

    图  4  苯在不同Ce含量CeY分子筛上的TG-DTG曲线(303 K)

    Figure  4  TG-DTG curves of benzene for various CeY zeolites (303 K)

    图  5  苯在不同Ce (OH)2+含量的CeY上的吸附密度图(303 K)

    Figure  5  Energy density of C6H6 in CeY with various amount of Ce (OH)2+ (303 K)

    (a): 13.3% Ce (OH)2+; (b): 42.3% Ce (OH)2+; (c): 71.3% Ce (OH)2+; (d): 99.7% Ce (OH)2+

    图  6  苯在NaY及不同Ce (OH)2+含量CeY分子筛上的吸附势能分布曲线(303 K)

    Figure  6  Potential energy distribution of benzene in CeY with various amount of Ce (OH)2+ and NaY (303 K)

    图  7  苯在NaY和CeY分子筛中扩散的MSD随时间的变化曲线(303 K)

    Figure  7  MSD-t curves of benzene diffusion in a NaY and different CeY zeolites at 303 K

    图  8  不同Ce含量Y分子筛的织构性质

    Figure  8  Pore structure properties of Y zeolites with various amount of cerium ions

    图  9  不同Ce含量Y分子筛的轻质产物汽油的液收率

    Figure  9  Gasoline liquid yield for CeY zeolites with various amount of cerium ions

    表  1  Langmuir方程拟合C6H6在CeY分子筛中的吸附等温线数据

    Table  1  Adsorption isotherm parameters of C6H6 in CeY zeolite fitted with Langmuir equations

    SampleQmKR2
    NaY255.200.120.984
    13.3%CeY254.160.150.973
    42.3%CeY245.070.120.972
    71.3%CeY226.800.100.980
    99.7%CeY206.020.070.975
    下载: 导出CSV

    表  2  苯与NaY和不同CeY分子筛最可几相互作用的能量(303 K)

    Table  2  Interaction energies of benzene with NaY and CeY zeolites (303 K)

    Energy E/(kJ·mol-1)
    NaY13.3%CeY42.3%CeY71.3%CeY99.7%CeY
    -87.99-71.55-69.16-88.24-108.28
    -106.15-98.87-95.14-103.85-137.32
    -125.27-127.91-134.52
    下载: 导出CSV
  • [1] GABRIELA D L P, SEDRAN U. Conversion of methylcyclopentane on rare earth exchanged Y zeolite FCC catalysts[J]. Appl Catal A:Gen, 1996, 144(1/2):147-158. https://www.researchgate.net/publication/244106275_Conversion_of_methylcyclopentane_on_rare_earth_exchanged_Y_zeolite_FCC_catalysts
    [2] GABRIELA D L P, EDUARDO F S, FATIMA M, Zanon Z, VERA L D C. Influence of different rare earth ions on hydrogen transfer over Y zeolite[J]. Appl Catal A:Gen, 2000, 197(1):41-46. doi: 10.1016/S0926-860X(99)00531-1
    [3] LIU X M, LIU S, LIU Y X. A potential substitute for CeY zeolite used in fluid catalytic cracking process[J]. Microporous Mesoporous Mater, 2016, 226:162-168. doi: 10.1016/j.micromeso.2015.12.046
    [4] CERQUEIRA H S, CAEIRO G, COSTA L, RAMOA RIBEIRO F J. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008, 292:1-13. doi: 10.1016/j.molcata.2008.06.014
    [5] GUZMAN A, ZUAZO I, FELLER A, OLINDO R, SIEVERS C, LERCHER J A. On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation[J]. Microporous Mesoporous Mater, 2005, 83:309-318. doi: 10.1016/j.micromeso.2005.04.024
    [6] ARBUZNIKOV A, VASILYEV V, GOURSOT A. Relationships between the structure of a zeolite and its adsorption properties[J].Surf Sci, 1998, 397:395-405. doi: 10.1016/S0039-6028(97)00760-7
    [7] SONG L J, SUN Z L, BAN H Y, DAI M, REES L V C. Studies of unusual adsorption and diffusion behaviour of benzene in silicalite-1[J]. Chem Chem Phys, 2004, 6:4722-4731. doi: 10.1039/b406051b
    [8] BLIGAARD T, NÖRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Brönsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004, 224(1):206-217. doi: 10.1016/j.jcat.2004.02.034
    [9] BEZVERKHYY I, RYZHIKOV A, GADACZ G, BELLAT J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catal Today, 2008, 130(1):199-205. doi: 10.1016/j.cattod.2007.06.038
    [10] LEE E F T, REES L V C.Calcination of cerium (Ⅲ) exchanged Y zeolite[J]. Zeolites, 1987, 7(5):446-450. doi: 10.1016/0144-2449(87)90013-3
    [11] LOPES J M, RIBEIRO F R.Effect of rare-earth nature on the basic properties of zeolite NaX containing occluded rare-earth species[J]. J Mol Catal A:Chem, 2002, 179:185-191. doi: 10.1016/S1381-1169(01)00324-7
    [12] CERQUEIRA H S, CAEIRO G, COSTA L, RIBEIRO F R. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008, 292:1-13. doi: 10.1016/j.molcata.2008.06.014
    [13] SHU Y, TRAVERT A, SCHILLER R, ZIEBARTH M, WORMSBECHER R, CHENG C W. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking:Fundamentals and commercial application[J]. Top Catal, 2015, 58:334-342. doi: 10.1007/s11244-015-0374-0
    [14] DU X H, GAO X H, ZHANG H T, LI X L, LIU P S. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013, 35:17-22. doi: 10.1016/j.catcom.2013.02.010
    [15] BOITON A P. The nature of rare-earth exchanged Y zeolites[J]. J Catal, 1971, 22(1):9-15. doi: 10.1016/0021-9517(71)90259-4
    [16] SCHERZER J, RITTER R E. Ion-exchanged ultrastable Y zeolites 3 gas oil cracking over rare earth-exchanged ultrastable Y zeolites[J]. Ind Eng Chem Prod Res Dev, 1978, 17(3):219-223. doi: 10.1021/i360067a008
    [17] 于善青, 田辉平, 代振宇, 龙军. La或Ce增强Y型分子筛结构稳定性的机制[J].催化学报, 2010, 31(10):1263-1270. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201010015.htm

    YU Shan-qin, TIAN Hui-ping, DAI Zhen-yu, LONG Jun. Mechanism of the influence of lanthanum and cerium on the stability of Y zeolite[J]. Chin J Catal, 2010, 31(10):1263-1270. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201010015.htm
    [18] SHU Y Y, TRAVERT A, SCHILLER R, MICHAEL Z, RICHARD W, WU C C. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking:Fundamentals and commercial application[J]. Top Catal, 2015, 58:334-342. doi: 10.1007/s11244-015-0374-0
    [19] 卢天, 陈飞武.原子电荷计算方法的对比[J].物理化学学报, 2012, 28(1):1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201201002.htm

    LU Tian, CHEN Fei-wu.Comparison of computational methods for atomic charges[J]. Acta Phys-Chim Sin, 2012, 28(1):1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201201002.htm
    [20] 张乐, 秦玉才, 汲德强, 杨野, 贾未鸣, 宋丽娟.稀土铈离子迁移对Y分子筛活性中心的影响[J].稀土, 2016, 37(4):16-22.

    ZHANG Le, QIN Yu-cai, JI De-qiang, YANG Ye, JIA Wei-ming, SONG Li-juan. The effects of cerium ions migration on active sites of y zeolite[J]. Chin Rare Earth, 2016, 37(4):16-22.
    [21] LEE C K, ASHTEKAR S, GLADDEN L F, BARRIE P J. Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 1:Experimental measurements[J]. J Chem Eng Sci, 2004, 59:1131-1138. doi: 10.1016/j.ces.2004.01.005
    [22] BARRIE P J, LEE C K, GLADDEN L F. Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 2:Numerical simulations[J].Chem Eng Sci, 2004, 59:1139-1151. doi: 10.1016/j.ces.2004.01.008
    [23] 段林海.沸石分子筛的吸附扩散及应用[D].兰州:兰州大学, 2006.

    DUAN Lin-hai. Adsorption, diffusion on zeolite and it's application[D]. Lanzhou:Lanzhou University, 2006.
    [24] 刘道胜, 韩春玉, 段林海, 宋丽娟, 孙兆林.最小二乘法计算苯、噻吩和正辛烷在NaY上程序升温脱附活化能[J].物理化学学报, 2009, 25(3):470-476. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200903014.htm

    LIU Dao-sheng, HAN Chun-yu, DUAN Lin-hai, SONG Li-juan, SUN Zhao-lin. Activation energy of temperature programmed desorption calculated using least-squares method for benzene, thiophene and octane on NaY[J]. Acta Phys-Chim Sin, 2009, 25(3):470-476. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200903014.htm
    [25] BROIDO A J. Sensitive graphical method of treating thermogravimetric analysis data[J]. Polym Sci Part B:Polym Phys, 1969, 7(10):1761-1773. doi: 10.1002/pol.1969.160071012
    [26] FALCONER J L, MADIX R J. Desorption rate isotherms in flash desorption analysis[J]. J Catal, 1977, 48(1/3):262-268. https://www.researchgate.net/publication/256213834_Desorption_rate_isotherms_in_flash_desorption_analysis
    [27] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(11):1703-1706. doi: 10.1021/ac60131a045
    [28] YANG R T, STEINBERG M. Reaction kinetics and differential thermal analysis[J]. J Phys Chem, 1976, 80(9):965-968. doi: 10.1021/j100550a009
    [29] 孙书红, 庞新梅, 郑淑琴, 张忠东.稀土超稳Y型分子筛催化裂化催化剂的研究[J].石油炼制与化工, 2001, 32(6):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH200106009.htm

    SUN Shu-hong, PANG Xin-mei, ZHENG Shu-qin, ZHANG Zhong-dong. Preparation of FCC catalyst containing REUSY[J]. Chin Pet Proc Pet Technol, 2001, 32(6):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH200106009.htm
    [30] SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z.The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013, 218-219:115-122. doi: 10.1016/j.cattod.2013.06.021
    [31] 张乐, 高雄厚, 张艳惠, 苏怡, 张爱萍.钠含量对超稳Y分子筛物化性能的综合影响[J].人工晶体学报, 2014, 43(2):454-464. http://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201402042.htm

    ZHANG Le, GAO Xiong-hou, ZHANG Yan-hui. SU Yi, ZHANG Ai-ping. Effects of sodium content on physicochemical properties of USY zeolite[J]. J Synthetic Crystals, 2014, 43(2):454-464. http://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201402042.htm
    [32] SANDOVAL-DÍAZ L E, MARTÍNEZ-GIL J M, TRUJILLO C A.The combined effect of sodium and vanadium contamination upon the catalytic performance of USY zeolite in the cracking of n-butane:Evidence of path-dependent behavior in Constable-Cremer plots[J]. J Catal, 2012, 294:89-98. doi: 10.1016/j.jcat.2012.07.009
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-14
  • 修回日期:  2016-11-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回