留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中温煤沥青基碳量子点的制备与结构解析

崔瀛丹 钟梅 哈丽丹·买买提 徐波 王世新

崔瀛丹, 钟梅, 哈丽丹·买买提, 徐波, 王世新. 中温煤沥青基碳量子点的制备与结构解析[J]. 燃料化学学报(中英文), 2020, 48(10): 1160-1170.
引用本文: 崔瀛丹, 钟梅, 哈丽丹·买买提, 徐波, 王世新. 中温煤沥青基碳量子点的制备与结构解析[J]. 燃料化学学报(中英文), 2020, 48(10): 1160-1170.
CUI Ying-dan, ZHONG Mei, HALIDAN Maimaiti, XU Bo, WANG Shi-xin. Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1160-1170.
Citation: CUI Ying-dan, ZHONG Mei, HALIDAN Maimaiti, XU Bo, WANG Shi-xin. Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1160-1170.

中温煤沥青基碳量子点的制备与结构解析

基金项目: 

国家自然科学基金 21766035

国家重点研发计划 2016YFF0102602

详细信息
  • 中图分类号: TQ536

Preparation and structure analysis of medium temperature coal tar pitch-based carbon quantum dots

Funds: 

the National Natural Science Foundation of China 21766035

National Key Research and Development Project 2016YFF0102602

More Information
  • 摘要: 以中温煤沥青为碳源,采用HNO3预处理结合球磨过程及双氧水氧化刻蚀的方法制备沥青基荧光碳量子点,以CQDs的收率和荧光量子产率为目标,获得最优制备条件:反应时间6 h、H2O2加入量100 mL(c-CQDs),此时,CQDs收率和荧光量子产率分别为6.3%和11.2%,且尺寸均匀、粒径分布在4-14 nm。延长反应时间至8 h(a-CQDs),碳量子点团聚;H2O2用量增加至120 mL(b-CQDs)则导致碳量子点氧化过度,颗粒小且杂乱无章。对不同条件下所制备的CQDs进行XPS、红外光谱、热重、13C NMR、Raman和晶相分析,探究反应条件对CQDs结构的影响规律。结果表明,就碳含量而言,a-CQDs > b-CQDs > c-CQDs,氧元素含量则为b-CQDs > c-CQDs > a-CQDs。各CQDs结构中C主要以芳碳形式存在,c-CQDs的C=O、O-C=O含量最高,而b-CQDs的C-O含量最高,13C NMR分析发现CQDs中表征平均芳环尺寸大小的Xb约为0.5,相应地,其平均芳环数约为3。
  • 图  1  CQDs的形成机理示意图

    Figure  1  Formation mechanism of CQDs

    图  2  RM(a)、RM-1(b)、RM-2(c)的SEM照片

    Figure  2  SEM images of RM (a), RM-1 (b), RM-2 (c)

    图  3  RM、RM-1和RM-2的红外光谱谱图

    Figure  3  FT-IR spectra of RM, RM-1 and RM-2

    图  4  不同条件下CQDs的收率和荧光量子产率

    Figure  4  Yield and fluorescence quantum yield of CQDs under different conditions

    图  5  CQDs的TEM照片及粒径分布((a), (a'))a-CQDs、((b), (b'))b-CQDs和((c), (c'))c-CQDs

    Figure  5  TEM images and size distributions of a-CQDs ((a), (a')), b-CQDs ((b), (b')) and c-CQDs((c), (c'))

    图  6  RM与CQDs的红外光谱谱图

    Figure  6  FT-IR spectra of RM and CQDs

    图  7  RM与CQDs的TG(a)和DTG(b)曲线

    Figure  7  TG (a) and DTG (b) curves of RM and CQDs

    图  8  RM与CQDs的XRD谱图

    Figure  8  XRD patterns of RM and CQDs

    图  9  CQDs XPS总谱图(a), C元素分峰拟合图(b), N元素分峰拟合图(c)

    Figure  9  XPS patterns of CQDs (a), the curving fitting results of C 1s (b), and the curving fitting results of N 1s (c)

    图  10  CQDs的13C NMR(a)总谱图和(b)拟合曲线示意图

    Figure  10  13C NMR spectra (a) and the fitting curves of CQDs (b)

    图  11  RM和CQDs的拉曼光谱谱图

    Figure  11  Raman spectra of RM and CQDs

    图  12  CQDs的荧光光谱谱图

    Figure  12  Fluorescence spectra of CQDs

    表  1  样品的元素分析

    Table  1  Ultimate analysis of samples

    Sample Content w/%
    C H O* N S
    RM 89.20 3.85 2.92 3.30 0.73
    a-CQDs 58.90 3.54 32.40 4.66 0.50
    b-CQDs 52.11 2.83 38.36 6.08 0.62
    c-CQDs 51.63 4.37 38.19 5.27 0.54
    : by difference
    下载: 导出CSV

    表  2  RM和CQDs中C、N的不同形态及相对含量

    Table  2  Forms and the corresponding relative content of C and N in CQDs and RM

    Sample Relative Content w/%
    C=C/C-C C-O C=O O-C=O N-6 N-5 -NO2
    RM 81.56 15.56 2.88 - 42.53 57.47 -
    a-CQDs 72.05 13.42 6.15 8.38 14.40 14.27 70.73
    b-CQDs 65.79 17.41 7.48 9.32 35.07 3.74 61.19
    c-CQDs 57.63 10.56 8.01 23.80 27.62 58.68 13.70
    下载: 导出CSV

    表  3  CQDs的碳类型及结构参数

    Table  3  Types of carbon and structural parameters of CQDs

    Sample fa fa1 faH faB falCC Xb
    RM 96.09 3.91 9.53 69.65 - 0.72
    a-CQDs 87.62 12.38 3.85 51.14 13.61 0.58
    b-CQDs 92.38 7.62 3.34 45.94 15.81 0.50
    c-CQDs 90.65 9.35 10.14 48.11 23.12 0.53
    faH—protonated aromatic carbon; faB—aromatic bridge carbon; falCC—RCOOH; fa—aromaticity; fal—fat carbon ratio; Xb—aromatic bridge carbon
    下载: 导出CSV
  • [1] 于殿伟.煤焦油深加工中的环境风险问题及防范策略[J].化学工程与装备, 2019, 48(9):280-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjhg201909128

    YU Dian-wei. Environmental risk problems and prevention strategies in coal tar deep processing[J]. Chem Eng Eqpt, 2019, 48(9):280-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjhg201909128
    [2] 赵亚楠.初探煤沥青及其应用[J].炭素, 2019, 42(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ts201903008

    ZHAO Ya-nan. Preliminary exploration of coal bitumen and its application[J]. Carbon, 2019, 42(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ts201903008
    [3] 张立中.煤炭开采对环境的污染与清洁开采技术[J].资源节约与环保, 2019, 39(11):92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyjyyhb201911080

    ZHANG Li-zhong. Environmental pollution caused by coal mining and clean mining technology[J]. Res Econom Environ Prot, 2019, 39(11):92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyjyyhb201911080
    [4] 周云辉, 谷小虎, 林雄超.煤焦油沥青基炭材料的研究进展[J].炭素技术, 2019, 38(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsjs201902001

    ZHOU Yun-hui, GU Xiao-hu, LIN Xiong-chao. Research development of carbon materials from coal tar pitch[J]. Carbon Techol, 2019, 38(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsjs201902001
    [5] YE R, XING C, LIN J, PENG Z, HUANG K, YAN Z, COOK N P, SAMUEL E, HWANG C, RUAN G, CERIOTTI G, RAJI A, MARTI A, TOUR J. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df597f5d181906253e26aec45a5dd0e5
    [6] HU S, MENG X, TIAN F, YANG W L, LI N, XUE C R, YANG J L, CHANG Q. Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing[J]. J Mater Chem C, 2017, 5(38):9849-9853. doi: 10.1039/C7TC03266H
    [7] LIU Y, HUI H, CAO W, MAO B, LIU Y, KANG Z. Advances in carbon dots:From the perspective of traditional quantum dots[J]. Mater Chem Front, 2020, 4(6):1586-1613. doi: 10.1039/D0QM00090F
    [8] IRAVANI S, VARMA R S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review[J]. Environ Chem Lett, 2020, 18(3):703-727.
    [9] RÖDING M, BRADLEY S J, NYDEN M, NANN T. Fluorescence lifetime analysis of graphene quantum dots[J]. J Phys Chem C, 2014, 118(51):30282-30290. doi: 10.1021/jp510436r
    [10] SAIKIA M, DAS T, DIHINGIA N, FAN X, SILVA L F, SAIKIA B K. Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials[J]. Diam Relat Mater, 2020, 30(106):107813-107822. http://www.sciencedirect.com/science/article/pii/S0925963519309021
    [11] KHAN Z G, PATIL P O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols[J]. Microchem J, 2020, 64(157):105011-105022. http://www.sciencedirect.com/science/article/pii/S0026265X20305592
    [12] HE P, SHI Y, MENG T, YUAN T, LI Y, LI X, ZHANG Y, FAN L, YANG S. Recent advances in white light-emitting diodes of carbon quantum dots[J]. Nanoscale, 2020, 12(8):4826-4832. doi: 10.1039/C9NR10958G
    [13] HAN W, LI D, ZHANG M, HU X, DUAN X, LIU S, WANG S. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots[J]. J Hazard Mater, 2020, 46(395):122695-122703. http://www.researchgate.net/publication/340637352_Photocatalytic_activation_of_peroxymonosulfate_by_surface-tailored_carbon_quantum_dots
    [14] 李跃辉.煤沥青基碳量子点的制备及荧光检测中的应用[D].大连: 大连理工大学, 2017.

    LI Yue-hui. Preparation and fluorescence detection of coal tar pitch based carbon quantum dots[D]. Dalian: Dalian University of Technology, 2017.
    [15] 孟勋.煤基荧光碳点的制备及其性能调控[D].太原: 中北大学, 2017.

    MENG Xun. Preparation and performance control of coal based fluorescent carbon dots[D]. Taiyuan: North University China, 2017.
    [16] 苏英杰, 高丽娟, 乔小琴, 龚晓飞, 程俊霞.水溶性沥青基碳量子点测Cu2+的条件优化[J].辽宁科技大学学报, 2017, 40(4):270-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=asgtxyxb201704006

    SU Ying-jie, GAO Li-juan, QIAO Xiao-qin, GONG Xiao-fei, CHENG Jun-xia. Conditions optimization of detection of Cu2+ ion using carbon quantum dots from water-soluble pitch[J]. J Univ Sci Technol Liaoning, 2017, 40(4):270-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=asgtxyxb201704006
    [17] WANG H, NING G, HE X, MA X, YANG F, XU Z, ZHAO S, XU C, LI Y. Carbon quantum dots derived by direct carbonization of carbonaceous microcrystals in mesophase pitch[J]. Nanoscale, 2018, 10(45):21492-21498. doi: 10.1039/C8NR07385F
    [18] CHENG Y, BAI M, SU J, FANG C, LI H, CHEN J, JIAO J. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes[J]. J Mater Sci Technol, 2019, 35(8):1515-1522. doi: 10.1016/j.jmst.2019.03.039
    [19] KWON W, DO S, LEE J, HWANG S, KIM J K, RHEE S W. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices[J]. Chem Mater, 2013, 25(9):1893-1899. doi: 10.1021/cm400517g
    [20] LI H T, KANG Z H, LIU Y, LEE S T. Carbon nanodots:Synthesis, properties and applications[J]. J Mater Chem, 2012, 22(46):24230-24253. doi: 10.1039/c2jm34690g
    [21] KATOH R, SUZUKI K, FURUBE A, KOTANI M, TOKUMARU K. Fluorescence quantum yield of aromatic hydrocarbon crystals[J]. J Phys Chem C, 2012, 113(7):2961-2965. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=553990ce474b9674b855167660b644bb
    [22] HU S, WEI Z, CHANG Q, TRINCHI A, YANG J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378(15):402-407. http://www.sciencedirect.com/science/article/pii/S0169433216307796
    [23] LI H, HE X, KANG Z, HUANG H, LIU Y, LIU J, LIAN S, TSANG C, YANG X, LEE S. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed, 2010, 49(122):4532-4536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a664bb360ca44e29b261b7a289538104
    [24] 胡超.基于煤炭及其衍生产物的荧光碳点制备与应用研究[D].大连: 大连理工大学, 2015.

    HU Chao.Synthesis and application of fluorescent carbon dots from coal and its derivatives[D]. Dalian: Dalian University of Technology, 2015.
    [25] HU S, WEI Z, CHANG Q, TRINCHI A, YANG J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378(15):402-407. http://www.sciencedirect.com/science/article/pii/S0169433216307796
    [26] ZHOU X, ZHANG Y, WANG C, WU X, YANG Y, ZHENG B, WU H, GUO S, ZHANG J. Photo-fenton reaction of graphene oxide:A new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8):6592-6599. doi: 10.1021/nn301629v
    [27] 闫金定, 崔洪, 杨建丽, 刘振宇.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报, 2003, 32(3):311-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200303023

    YAN Jin-ding, CUI Hong, YANG Jian-li, LIU Zhen-yu.Research on pyrolysis behavior of yanzhou coal using TG/MS[J]. J China Univ Min Technol, 2003, 32(3):311-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200303023
    [28] 刘春法, 单长春, 杜勇, 高晋生.不同馏程闪蒸油制预炭化沥青的热解行为及其性质研究[J].上海化工, 2007, 32(4):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhg200704006

    LIU Chun-fa, SHAN Chang-chun, DU Yong, GAO Jin-sheng. The study of the property and thermal destruction characteristics of condensation pitchs of two differential distillation Range's flash oil[J]. Shanghai Chem Ind, 2007, 32(4):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhg200704006
    [29] MEWADA A, PANDEY S, SHINDE S, MISHRA N, OZA G, THAKUR M, SHARON M, SHARON M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel[J]. Mat Sci Eng C, 2013, 33(5):2914-2917. doi: 10.1016/j.msec.2013.03.018
    [30] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9):4006-4013. doi: 10.1021/ef200738p
    [31] 李同起, 杨晓光, 许正辉, 孙银洁, 王晓叶.样品位置对炭材料XRD测试结果的影响[J].宇航材料工艺, 2009, 39(4):76-80. http://d.wanfangdata.com.cn/Periodical/yhclgy200904020

    LI Tong-qi, YANG Xiao-guang, XU Zheng-hui, SUN Yin-jie, WANG Xiao-ye. Influence of testing position on XRD results of carbon material[J]. Aerospace Mater Technol, 2009, 39(4):76-80. http://d.wanfangdata.com.cn/Periodical/yhclgy200904020
    [32] DONG Y, PANG H, YANG H B, GUO C X, SHAO J W, CHI Y W, LI C M, YU T. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed, 2013, 52(30):7800-7804. doi: 10.1002/anie.201301114
    [33] DOU X, LIN Z, CHEN H, ZHENG Y, LU C, LIN J. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method[J]. Chem Comm, 2013, 49(52):5871-5873. doi: 10.1039/c3cc41145a
    [34] GONG Y, YU B, YANG W, ZHANG X. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen pecies inside macrophages[J]. Biosens Bioelectron, 2016, 27(79):822-828. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0e32c7f9d40182353e2691a395f3d959
    [35] LI L, LU C, LI S, LIU S, WANG L, CAI W, XU W, YANG X, LIU Y, ZHANG R. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. J Mater Chem B, 2017, 5(10):1935-1942. doi: 10.1039/C6TB03003C
    [36] 崔瀛丹, 钟梅, 哈丽丹·买买提, 杨超, 樊星.中温煤焦油沥青逐级萃取的产物组成与结构分析[J].煤炭学报, 2020.

    CUI Ying-dan, ZHONG Mei, HALIDAN-Maimaiti, YANG Chao, FAN Xing. The composition and structure analysis of products from the suquential extraction process of medium temperature coal tar pitch[J]. J China Coal Soc, 2020, in press.
    [37] WANG Y G, WEI X Y, XIE R L, LIU F J, LI P, ZONG Z M. Structural characterization of typical organic species in Jincheng No. 15 anthracite[J]. Energy Fuels, 2015, 29(2):595-601. doi: 10.1021/ef502373p
    [38] SONG C, HOU L, SAINI A K, HATCHER P G, SCHOBERT H H. CPMAS 13C NMR and pyrolysis-GC-MS studies of structure and liquefaction reactions of Montana subbituminous coal[J]. Fuel Process Technol, 1993, 34(3):249-276. http://www.sciencedirect.com/science/article/pii/037838209390069G
    [39] SOLUM M S, PUGMIRE R J, GRANT D M. Carbon-13 solid-state NMR of Argonne-premium coals[J]. Energy Fuels, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
    [40] ZHU W, ZHANG J, JIANG Z, WANG W, LIU X. High-quality carbon dots:synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+[J]. Rsc Adv, 2014, 4(33):17387-17392. doi: 10.1039/C3RA47593J
    [41] GHAZALEH A, PAYAM A, MASRINDA T S. The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method[J]. J Nanomater, 2015, 10(8):961231-961236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004027595
    [42] ZHANG Y, XIE C, GU F, WU H, GUO Q. Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly (3-hexylthiophene)[J]. J Hazard Mater, 2016, 315(5):23-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1b98f4aeaff9d0118cc8d7272a7f56a
    [43] SHEN C, SUN Y, WANG J, LU Y. Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging[J]. Nanoscale, 2014, 6(15):9139-9147. doi: 10.1039/C4NR02154A
    [44] YOUH M J, JIANG M Y, CHUNG M C, TAI H C, LI Y Y. Formation of graphene quantum dots by ball-milling technique using carbon nanocapsules and sodium carbonate[J]. Inorg Chem Commun, 2020, 23(119):108061-108065. http://www.sciencedirect.com/science/article/pii/S1387700320306511
    [45] LIN L, ZHANG S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chem Commun, 2012, 48(82):10177-10179. doi: 10.1039/c2cc35559k
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  99
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-09-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回