留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响

赵瑞玉 曹东炜 曾令有 梁娟 刘晨光

赵瑞玉, 曹东炜, 曾令有, 梁娟, 刘晨光. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报(中英文), 2016, 44(5): 564-569.
引用本文: 赵瑞玉, 曹东炜, 曾令有, 梁娟, 刘晨光. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报(中英文), 2016, 44(5): 564-569.
ZHAO Rui-yu, CAO Dong-wei, ZENG Ling-you, LIANG Juan, LIU Chen-guang. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569.
Citation: ZHAO Rui-yu, CAO Dong-wei, ZENG Ling-you, LIANG Juan, LIU Chen-guang. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569.

助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响

基金项目: 

国家自然科学基金 21176258

国家自然科学基金 U1162203

中石油催化剂研制开发与工业应用重大专项 1001A050104

详细信息
    通讯作者:

    曾令有, E-mail: zengly1990@126.com

  • 中图分类号: TE624.4

Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization

Funds: 

the National Natural Science Foundation of China 21176258

the National Natural Science Foundation of China U1162203

the Catalysts Development and Industrial Application Research Program of CNPC 1001A050104

  • 摘要:γ-Al2O3为载体, 制备了一系列不同NiO负载量的NiMo/γ-Al2O3催化剂, 利用XRD、27Al-MAS NMR、Py-FTIR和HRTEM等技术对其进行了表征; 在高压微反装置对该系列催化剂的加氢脱硫性能进行了评价, 研究了助剂Ni与载体γ-Al2O3中不饱和铝间的相互作用及其对催化剂活性相结构形貌和催化活性的影响。结果表明, 助剂Ni优先作用于γ-Al2O3表面的四配位不饱和铝原子位置; 随着NiO负载量的增加, 硫化态NiMo/γ-Al2O3催化剂中MoS2活性相的长度变短、堆垛层数增加。Ni的引入能明显提高NiMo/γ-Al2O3催化剂的加氢脱硫活性, 但其加氢选择性则有所降低。
  • 图  1  不同NiO负载量氧化态催化剂的XRD谱图

    Figure  1  XRD patterns of the fresh NiMo/γ-Al2O3 catalysts with different NiO loadings

    a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%

    图  2  不同NiO负载量硫化态催化剂的XRD谱图

    Figure  2  XRD patterns of the sulfided NiMo/γ-Al2O3 catalysts with different NiO loadings

    ●: MoS2; ◆: γ-Al2O3
    a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%

    图  3  不同NiO负载量的NiO/γ-Al2O327Al-MAS NMR谱图

    Figure  3  27Al-MAS NMR spectra of the sulfided Ni/γ-Al2O3 catalysts with different NiO loadings

    a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%

    图  4  NiO/γ-Al2O3中Al3+相对含量随NiO负载量的变化

    Figure  4  Relationship between the relative content of Al3+ and the NiO loading in the NiO/γ-Al2O3 catalysts

    图  5  不同量NiO负载于γ-Al2O3的Py-FTIR谱图

    Figure  5  Py-IR spectra of the Ni/γ-Al2O3 catalysts with different NiO loadings

    a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%

    图  6  不同NiO负载量硫化态催化剂的HRTEM照片

    Figure  6  HRTEM images of the sulfided NiMo/γ-Al2O3 catalysts with different NiO loadings

    (a): 0; (b): 1.25%; (c): 2.50 %; (d): 3.75%; (e): 5.00%

    表  1  硫化态催化剂中MoS2的平均粒径及平均堆叠层数

    Table  1  Length and layer stacking distribution of MoS2 crystallites in the sulfide NiMo/γ-Al2O3 catalysts with different NiO loadings

    NiO loading w/% Average length L/nm Average stacked layer number
    0 2.55 1.30
    1.25 1.82 1.45
    2.50 1.78 1.56
    3.75 1.53 1.64
    5.00 1.52 2.10
    下载: 导出CSV

    表  2  不同NiO负载量催化剂DBT加氢脱硫的产物分布及活性评价

    Table  2  Products distribution for the hydrodesulfurization of dibenzothiophene over the NiMo/γ-Al2O3 catalysts with different NiO loadings

    NiO loading w/% Product distribution /% xDBT/% sHYD/DDS/%
    BCH isomers CHB isomers BP 6H-DBT 4H-DBT DBT
    0 0.000 0 10.02 27.88 0.433 1 1.187 1 60.38 38.01 0.40
    1.25 0.207 3 10.17 37.39 0.300 7 1.530 8 50.40 47.77 0.32
    2.50 0.65 12.87 50.28 0.194 1 1.056 7 30.94 67.81 0.28
    3.75 0.48 18.56 78.55 0.000 0 0.045 4 2.36 97.59 0.24
    5.00 0.24 12.63 85.82 0.000 0 0.000 0 1.30 98.70 0.15
    下载: 导出CSV
  • [1] BOUWENS S M A M, VANZON F B M, VANDIJK M P, VANDERKRAAN A M, DEBEER V H G, VANVEEN J A R, KONINGSBERGER D C. On the structural differences between alumina-supported comos type Ⅰ and alumina-, silica-, and carbon-supported comos type Ⅱ phases studied by XAFS, MES, and XPS[J].J Catal, 1994, 146(2): 375. doi: 10.1006/jcat.1994.1076
    [2] 尹海亮, 周同娜, 刘晨光.磷对NiMo/Al2O3催化剂活性组分与载体间相互作用的影响[J].石油炼制与化工, 2012, 7: 32-36. http://www.airitilibrary.com/Publication/alDetailedMesh?docid=sylzyhg201207007

    YIN Hai-liang, ZHOU Tong-na, LIU Chen-guang. Effect of phosphorus on the interaction between active component and support of NiMo/Al2O3catalyst [J]. Pet Process Petrochem, 2012, 7: 32-36. http://www.airitilibrary.com/Publication/alDetailedMesh?docid=sylzyhg201207007
    [3] LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN C, HELVEG S. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007, 249: 220-233. doi: 10.1016/j.jcat.2007.04.013
    [4] DIGNE M, SAUTET P, RAYBAUD P. Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces[J]. J Catal, 2004, 226(1): 54-68. doi: 10.1016/j.jcat.2004.04.020
    [5] LIU X. DRIFTS study of surface of γ-alumina and its dehydroxylation[J]. J Phys Chem C, 2008, 112: 5066-5073. doi: 10.1021/jp711901s
    [6] OSTROMECKI M M, BURCHAM L J, WACHS I E, RAMANI N, EKERDT J E. The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina:Ⅰ.Ambient conditions[J]. J Mol Catal A: Chem, 1998, 132: 43-57. doi: 10.1016/S1381-1169(97)00226-4
    [7] ZHAO C, YU Y, JENTYS A, LERCHER J A. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation[J]. Appl Catal B: Environ, 2013, 132: 282-292. http://www.sciencedirect.com/science/article/pii/S0926337312005632
    [8] BORELLO E, CIMINO A, GHIOTTI G, JACONO M L, SCHIAVELLO M, ZECCHINA A. Surface configurations and infra-red studies on nickel oxide supported on η-and γ-Al2O3[J]. Discuss Faraday Soc, 1971, 52: 149-160. doi: 10.1039/DF9715200149
    [9] SUN Y, YUAN L, MA S, HAN Y, ZHAO L, WANG W. Improved catalytic activity and stability of mesostructured sulfated zirconia by Al promoter[J]. Appl Catal A: Gen, 2004, 268(1/2): 17-24. http://d.wanfangdata.com.cn/NSTLQK_NSTL_QKJJ026119586.aspx
    [10] MORTERRA C, COLUCCIA S, CHIRINO A, BOCCUZZI F.Infrared study of the adsorption of pyridine on α-Al2O3[J]. J Catal, 1978, 54(3): 348-364. doi: 10.1016/0021-9517(78)90083-0
    [11] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2): 224-235. doi: 10.1006/jcat.2000.3158
    [12] SUN M, KOOYMAN P J, PRINS R. A high-resolution transmission electron microscopy study of the influence of fluorine on the morphology and dispersion of WS2 in sulfided W/Al2O3 and NiW/Al2O3 catalysts[J]. J Catal, 2002, 206(2): 368-375. doi: 10.1006/jcat.2001.3503
    [13] ALONSO G, BERHAULT G, AGUILAR A, COLLINS V, ORNELAS C, FUENTES S, CHIANELLI R R. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates[J]. J Catal, 2002, 208(2): 359-369. doi: 10.1006/jcat.2002.3553
    [14] NIKULSHIN P A, SALNIKOV V A, MOZHAEV A V, MINAEV P P, KOGAN V M, PIMERZIN A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co (Ni) Mo catalysts in HDS and HYD reactions[J]. J Catal, 2014, 309: 386-396. doi: 10.1016/j.jcat.2013.10.020
    [15] TUXEN A, KIBSGAARD J, GØBEL H. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters[J]. ACS nano, 2010, 4(8): 4677-4682. doi: 10.1021/nn1011013
    [16] TUXEN A K, FÜCHTBAUER H G, TEMEL B, HINNEMANN B, TOPSØE H, KNUDSEN K, BESENBACHER F, LAURITSEN J V. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. J Catal, 2012, 295: 146-154. doi: 10.1016/j.jcat.2012.08.004
    [17] BESENBACHER F, BRORSON M, CLAUSEN B S, HELVEG S, HINNEMANN B, KIBSGAARD J, LAURITSEN J V. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catal Today, 2008, 130(1): 86-96. doi: 10.1016/j.cattod.2007.08.009
    [18] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, ET A L. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2): 224-235. doi: 10.1006/jcat.2000.3158
    [19] SHIMADA H. Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance[J]. Catal Today, 2003, 86(1): 17-29. http://www.sciencedirect.com/science/article/pii/S0920586103004012
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  16
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-01-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回