留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru/Co-Al-O负载型催化剂的制备及其加氢脱氧性能研究

谭亮 苗磊 仵奎 王威燕 杨运泉

谭亮, 苗磊, 仵奎, 王威燕, 杨运泉. Ru/Co-Al-O负载型催化剂的制备及其加氢脱氧性能研究[J]. 燃料化学学报(中英文), 2018, 46(2): 219-224.
引用本文: 谭亮, 苗磊, 仵奎, 王威燕, 杨运泉. Ru/Co-Al-O负载型催化剂的制备及其加氢脱氧性能研究[J]. 燃料化学学报(中英文), 2018, 46(2): 219-224.
TAN Liang, MIAO Lei, WU Kui, WANG Wei-yan, YANG Yun-quan. Preparation of Ru/Co-Al-O supported catalysts and its hydrodeoxygenation properties[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 219-224.
Citation: TAN Liang, MIAO Lei, WU Kui, WANG Wei-yan, YANG Yun-quan. Preparation of Ru/Co-Al-O supported catalysts and its hydrodeoxygenation properties[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 219-224.

Ru/Co-Al-O负载型催化剂的制备及其加氢脱氧性能研究

基金项目: 

国家自然科学基金 21776236

国家自然科学基金 21676225

湖南省研究生科研创新项目 CX2017B334

详细信息
  • 中图分类号: O643.36

Preparation of Ru/Co-Al-O supported catalysts and its hydrodeoxygenation properties

Funds: 

the National Natural Science Foundation of China 21776236

the National Natural Science Foundation of China 21676225

Hunan Province Graduate Research and Innovation Funded Projects CX2017B334

More Information
  • 摘要: 先采用共沉淀法制备出Co-Al类水滑石, 其经煅烧后形成的复合氧化物用作载体制备出一系列Ru/Co-Al-O负载型催化剂, 并采用XRD、BET、FT-IR等方法对其结构性能进行表征分析, 最后以木质素生物质油的典型含氧化合物对甲基苯酚为模型, 测试所制催化剂的加氢脱氧性能。主要研究了载体中Co/Al物质的量比、催化剂还原温度等因素对催化剂加氢脱氧活性的影响, 并优化了HDO反应温度。结果表明, 当Co/Al物质的量比为3:1, 催化剂还原温度为350 ℃, 反应温度为275 ℃时, 催化剂的加氢脱氧活性最高, 催化对甲基苯酚加氢脱氧反应的转化率和脱氧率都达到了100%。
  • 图  1  Co-Al类水滑石XRD谱图

    Figure  1  XRD pattern of Co-Al layered double hydroxides

    图  2  不同Co/Al物质的量比催化剂XRD谱图

    Figure  2  XRD patterns of the catalysts with different Co/Al molar ratio

    图  3  催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of the catalysts

    图  4  275 ℃下Ru/Co-Al-O催化对甲基苯酚HDO反应2 h后的转化率、产物分布及脱氧率

    :conversion; :methylcyclohexane;
    :3-methylcyclohexene; :toluene;
    :4-methylcyclohexanol;
    :4-methylcyclohexanone; :deoxidation rate

    Figure  4  Catalytic reaction results over different Ru/Co-Al-O catalysts reaction conditions:reaction time:2 h, 275 ℃, 4 MPa

    表  1  Ru/Co-Al-O负载型催化剂对应的制备条件及BET分析

    Table  1  Ru/Co-Al-O supported catalyst corresponding to the preparation conditions and BET analysis results

    Catalyst Co/Al(molar ratio) Reduction temperature t/℃ Specific surface area A/(m2·g-1) Pore volume v/(mL·g-1) Pore diameter d/nm
    Ru/Co4Al-350 4 350 65 0.22 12.3
    Ru/Co3Al-350 3 350 79 0.29 13.4
    Ru/Co3Al-500 3 500 48 0.21 16.2
    Ru/Co2Al-350 2 350 67 0.31 10.9
    Ru/Co1Al-350 1 350 40 0.10 9.4
    Ru/Al-350 0 350 194 0.32 5.1
    下载: 导出CSV

    表  2  275 ℃反应2 h时不同还原温度的催化剂催化对甲基苯酚HDO产物分布

    Table  2  HDO product distribution of the catalysts reduced at different temperatures

    Catalyst Ru/Co3Al-350 Ru/Co3Al-500
    Conversion rate x/% 100 99.2
    Product distribution w/%
    Methylcyclohexane 92.1 83.8
    4-methylcyclohexanol 0 8.5
    4-methylcyclohexanone 0 0.3
    3-methylcyclohexene 0 0.9
    Toluene 7.9 6.5
    Deoxidation rate η/% 100 89.6
    下载: 导出CSV

    表  3  不同温度下Ru/Co3Al-350催化对甲基苯酚HDO反应的转化率、产物分布及脱氧率

    Table  3  Effect of reaction temperature on HDO

    225 ℃ 250 ℃ 275 ℃
    Conversion x/% 56.0 94.6 100
    Product distribution w/%
    Methylcyclohexane 23.7 80.4 92.1
    4-methylcyclohexanol 65.3 10.5 0
    4-methylcyclohexanone 6.0 1.1 0
    3-methylcyclohexene 1.7 1.6 0
    Toluene 3.3 6.4 7.9
    Deoxidation rate η/% 16.5 82.3 100
    下载: 导出CSV
  • [1] LIU Z, GUAN D, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-BROWN D, LIN J, ZHAO H, HONG C, BODEN T A, FENG K, PETERS G P, XI F, LIU J, LI Y, ZHAO Y, ZENG N, HE K.Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J].Nature, 2015, 524(7565):335-338. doi: 10.1038/nature14677
    [2] LI C, ZHAO X, WANG A, HUBER G W, ZHANG T.Catalytic transformation of lignin for the production of chemicals and fuels[J].Chem Rev, 2015, 115(21):11559-11624. doi: 10.1021/acs.chemrev.5b00155
    [3] SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR, M R.Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J].Energy Environ Sci, 2014, 7(1):103-129. doi: 10.1039/C3EE43081B
    [4] ZHAO C, LERCHER J A.Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions[J].Angew Chem Int Ed, 2012, 51(24):5935-5940. doi: 10.1002/anie.201108306
    [5] HONG Y, ZHANG H, SUN J, AYMAN K M, HENSLEY A J R, Gu M, ENGELHARD M H, MCEWEN J-S, Wang Y.Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol[J].ACS Catal, 2014, 4(10):3335-3345. doi: 10.1021/cs500578g
    [6] WANG G H, CAO Z, GU D, PFÄNDER N, SWERTZ A C, SPLIETHOFF, BONGARD H J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHUTH F.Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J].Angew Chem Int Ed, 2016, 55(31):8850-8855. doi: 10.1002/anie.201511558
    [7] GRILC M, VERYASOV G, LIKOZAR B, JESIH A, LEVEC J.Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts[J].Appl Catal B:Environ, 2015, 1633(0):467-477. https://www.researchgate.net/profile/Adolf_Jesih
    [8] CECILIA J A, INFANTES-MOLINA A, SANMARTIN-DONOSO J, RODRIGUEZ-AGUADO E, BALLESTEROS-PLATA D, RODRIGUEZ-CASTELLON, E.Enhanced HDO activity of Ni2P promoted with noble metals[J].Catal Sci Technol, 2016, 6(19):7323-7333. doi: 10.1039/C6CY00639F
    [9] DING R, WU Y, CHEN Y, CHEN H, WANG J, SHI, Y, YANG M.Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO2/CNTs catalyst:an insight into the promoting effect of cobalt[J].Catal Sci Technol, 2016, 6(7):2065-2076. doi: 10.1039/C5CY01575H
    [10] PATEL M, KUMAR A.Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J].Renewable Sustainable Energy Rev, 2016, 58(4):1293-1307. https://www.sciencedirect.com/science/article/pii/S1364032115015294
    [11] WANG W, LIU P, WU K, TAN S, LI W, YANG Y.Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalyst and their high hydrodeoxygenation activities[J].Green Chem, 2016, 18(4):984-988. doi: 10.1039/C5GC02073E
    [12] KUSUMOTO S, NOZAKI K, Direct and selective hydrogenolysis of arenols and aryl methyl ethers[J].Nature Communications, 2015, 6(3):6296. https://www.researchgate.net/publication/272750703_Direct_and_selective_hydrogenolysis_of_arenols_and_aryl_methyl_ethers
    [13] DE SOUZA P M, RABELO-NETO R C, BORGES L E P, JACOBS G, DAVIS B H, GRAHAM U M, REASASCO D E, NORONHA F B.Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2[J].ACS Catal, 2015, 5(12):7385-7398. doi: 10.1021/acscatal.5b01501
    [14] WANG L, ZHANG J, YI X, ZHENG A, DENG F, CHEN C, JI Y, LIU F, MENG X, XIAO F S.Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules[J].ACS Catal, 2015, 5(5):2727-2734. doi: 10.1021/acscatal.5b00083
    [15] LUSKA K L, MIGOWSKI P, EL SAYED S, LEITNER W.Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols[J].Angew Chem Int Ed, 2015, 54(52):15750-15755. doi: 10.1002/anie.201508513
    [16] DE SOUZA P M, RABELONETO R C, P, BORGES L E, JACOBS G, DAVIS B H, RESASCO D E, NORONHA F B.Hydrodeoxygenation of phenol over Pd catalysts.Effect of support on reaction mechanism and catalyst deactivation[J].ACS Catal, 2017, 4(5):986-990. doi: 10.1021/acscatal.6b02022
    [17] SUN Q, CHEN G, WANG H, LIU X, HAN J, GE Q, ZHU, X.Insights into the major reaction pathways of vapor-phase hydrodeoxygenation of m-cresol on a Pt/HBeta catalyst[J].ChemCatChem, 2016, 8(3):551-561. doi: 10.1002/cctc.201501232
    [18] FAN G, LI F, EVANS D G, DUAN X.Catalytic applications of layered double hydroxides:Recent advances and perspectives[J].Chem Soc Rev, 2014, 43(20):7040-7066. doi: 10.1039/C4CS00160E
    [19] TIAN Z, LI Q, HOU J, PEI L, LI Y, AI S.Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde[J].J Catal, 2015, 331(3):193-202. https://www.sciencedirect.com/science/article/pii/S0021951715002833
    [20] MANFRO R L, PIRES T P M D, RIBEIRO N F P, SOUZA M M V M.Aqueous-phase reforming of glycerol using Ni-Cu catalysts prepared from hydrotalcite-like precursors[J].Catal Sci Technol, 2013, 3(5):1278-1287. doi: 10.1039/c3cy20770f
    [21] WANG W, ZHANG K, YANG Y, LIU H, QIAO Z, LUO H.Synthesis of mesoporous Al2O3 with large surface area and large pore diameter by improved precipitation method[J].Microporous Mesoporous Mater, 2014, 193(0):47-53. https://www.scientific.net/AMR.554-556.498
    [22] WANG Z, JIANG Z, SHANGGUAN W, Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites[J].Catal Commun, 2007, 8(11):1659-1664. doi: 10.1016/j.catcom.2007.01.025
    [23] LIU X, FAN B, GAO S, LI R.Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose[J].Fuel Process Technol, 2013, 106(6):761-768. https://www.sciencedirect.com/science/article/pii/S0378382012004031
    [24] POPOV A, KONDRATIEVA E, MARIEY L, GOUPIL J M, EL FALLAH J, GILSON, J-P, TRAVERT A, MAUGE F.Bio-oil hydrodeoxygenation:Adsorption of phenolic compounds on sulfided (Co)Mo catalysts[J].J Catal, 2013, 297(0):176-186. https://www.sciencedirect.com/science/article/pii/S0021951712003181#!
    [25] YANG Y, LUO H A, TONG G, SMITH K J, TYE C T.Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures[J].Chin J Chem Eng, 2008, 16(5):733-739. doi: 10.1016/S1004-9541(08)60148-2
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  39
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 修回日期:  2018-01-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回