留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水相循环对玉米秸秆水热液化成油特性影响的研究

尹思媛 田纯焱 李艳美 高传瑞 张念泽 丑鹏涛 易维明 李志合

尹思媛, 田纯焱, 李艳美, 高传瑞, 张念泽, 丑鹏涛, 易维明, 李志合. 水相循环对玉米秸秆水热液化成油特性影响的研究[J]. 燃料化学学报(中英文), 2020, 48(3): 275-285.
引用本文: 尹思媛, 田纯焱, 李艳美, 高传瑞, 张念泽, 丑鹏涛, 易维明, 李志合. 水相循环对玉米秸秆水热液化成油特性影响的研究[J]. 燃料化学学报(中英文), 2020, 48(3): 275-285.
YIN Si-yuan, TIAN Chun-yan, LI Yan-mei, GAO Chuan-rui, ZHANG Nian-ze, CHOU Peng-tao, YI Wei-ming, LI Zhi-he. Effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 275-285.
Citation: YIN Si-yuan, TIAN Chun-yan, LI Yan-mei, GAO Chuan-rui, ZHANG Nian-ze, CHOU Peng-tao, YI Wei-ming, LI Zhi-he. Effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 275-285.

水相循环对玉米秸秆水热液化成油特性影响的研究

基金项目: 

山东省自然科学基金 ZR2017BEE049

国家自然科学基金 51706126

国家自然科学基金 31872400

国家自然科学基金 51536009

淄博市校城融合项目 2019ZBXC380

详细信息
  • 中图分类号: TK6

Effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk

Funds: 

The project was supported by National Natural Science Foundation of Shandong Province ZR2017BEE049

National Natural Science Foundation of China 51706126

National Natural Science Foundation of China 31872400

National Natural Science Foundation of China 51536009

SDUT & Zibo City Integration Project 2019ZBXC380

More Information
  • 摘要: 以玉米秸秆为原料,以去离子水为介质,研究水相循环对玉米秸秆水热液化成油特性的影响。循环过程中不额外添加去离子水,对循环前后的水相产物、生物原油和固体产物进行对比研究发现,水相循环产生有机酸的富集效应,促进酮酚类的转化,两者共同作用提高生物原油和固体产物的产率和品质。具体表现为:水相循环对水相pH值影响较小(3.62-3.91),但可以使乙酸和丙酸等有机酸不断累积,同时使酮类、酚类化合物含量逐渐减少;水相循环可以使生物原油产率从20.42%逐步提高至24.31%,且可略提升油品质;水相循环可以使固体产物的碳含量由60.94%提升至61.74%。
  • 图  1  产物分离与收集流程示意图

    Figure  1  Products separation and collection procedure

    图  2  水相循环前后产物的分布

    Figure  2  Product distribution change with aqueous phase recirculation

    图  3  水相循环前后水相产物的pH值

    Figure  3  pH value change of aqueous phase with aqueous phase recirculation

    图  4  水相循环前后水相产物的总有机碳(TOC)

    Figure  4  Total organic carbon (TOC) change of aqueous phase with aqueous phase recirculation

    图  5  水相循环前后生物原油的TG和DTG曲线

    Figure  5  TG (a) and DTG (b) curves of bio-crude oil with and without aqueous phase recirculation

    图  6  水相循环前后生物原油的FT-IR谱图

    Figure  6  FT-IR spectra of bio-crude oil with and without aqueous phase recirculation

    表  1  玉米秸秆的元素分析、工业分析和组分分析

    Table  1  Ultimate, proximate and components analyses of corn stalk

    Ultimate analysis wd/% Proximate analysis war/% Component analysis wd/%
    C H N S O* M V FC A cellulose hemicellulose lignin
    44.17 2.65 0.92 0.19 41.15 8.46 77.48 6.14 7.92 31.31±0.69 40.13±0.40 4.74±0.87
    d: dry basis; ar: as received; M: moisture; V: volatile matter; FC: fixed carbon; A: ash;
    *: oxygen calculated by difference
    下载: 导出CSV

    表  2  水相循环前后生物原油的元素分析和热值

    Table  2  Ultimate analysis and QHHV of bio-crude oil with and without aqueous phase recirculation

    Name Number of recirculation Ultimate analysis wd/% Atomic ratio QHHV/
    (MJ·kg-1)
    C H N S O H/C O/C N/O
    Bio-crude oil 0 69.80 6.78 1.19 0.00 22.24 1.17 0.24 0.06 30.81
    1 68.08 7.10 1.25 0.08 23.49 1.26 0.26 0.06 30.54
    2 68.61 6.86 1.49 0.00 23.04 1.20 0.25 0.07 30.39
    3 69.84 7.08 1.49 0.04 21.56 1.22 0.23 0.08 31.31
    下载: 导出CSV

    表  3  生物原油的沸点分布

    Table  3  Boiling point distribution of bio-crude oil

    Fractionation range t/℃ Boiling point distribution /%
    0 1 2 3
    50-200 18.43 14.30 17.32 18.45
    200-250 7.60 11.56 13.26 13.02
    250-300 10.12 13.92 13.16 12.78
    300-350 11.90 13.14 12.32 12.48
    350-400 11.93 11.11 10.67 11.28
    400-450 4.78 4.95 4.77 4.96
    450-500 3.04 2.88 2.63 2.38
    500-800 4.38 4.57 4.26 3.28
    下载: 导出CSV

    表  4  生物原油FT-IR吸收峰表

    Table  4  FT-IR peaks of the bio-crude oil

    Wavenumber σ/cm-1 Band assignment Functional groups
    3300-3100 -OH stretching vibration polysaccharide
    3100-3050 C-H stretching vibration naphthenic
    2975-2740 C-H stretching vibration fatty compound
    1740-1610 C=O stretching vibration carboxylic acid, aldehyde, ketone
    1600-1560 C=C stretching vibration aromatic compound
    1540-1500 C-O aromatic ring skeleton vibration, -OH bending vibration phenols
    1470-1430 C-H bending vibration fatty compound
    1430-1390 -OH, C-H bending vibration hydrocarbons, acids, phenols, alcohols
    1390-1260 C-H bending vibration fatty compound
    1260-1190 C-O stretching vibration unsaturated ether
    1130-1100 C-H, C-O bending vibration aromatic compounds, alcohols
    950-750 O-H bending vibration aromatic compounds
    下载: 导出CSV

    表  5  水相循环前后生物原油的组成和主要化合物的面积

    Table  5  Composition of bio-crude oil and relative peak area of major components with and without aqueous phase recirculation

    Number R.T/min Name of Compound Relative peak area /%
    C0 C1 C2 C3
    Organic acid
    1 18.275 2-hexenoic acid, 3, 4, 4-trimethyl-5-oxo-, (Z)- 0.469 1.155 1.205 -
    2 19.989 7-methylindan-1-one - - 0.477 -
    3 21.415 2-(1-carboxy-1-methylethyl)-4-methylfuran-3-carboxylic acid - - 2.091 -
    total 0.469 1.155 3.773 0.000
    Ketone
    4 6.535 2-cyclopenten-1-one, 2-methyl- 0.615 - 3.105 4.166
    5 8.133 2-cyclopenten-1-one, 3-methyl- - 2.335 1.804 2.207
    6 10.183 2-cyclopenten-1-one, 3, 4-dimethyl- - - - 2.648
    7 11.634 2-cyclopenten-1-one, 3, 4, 5-trimethyl- 2.565 4.422 - 12.749
    8 12.674 4-pyridinol - - 0.976 -
    9 13.188 2-hydroxy-5, 5-dimethylcyclopent-2-en-1-one - - 0.886 -
    10 14.376 2, 4-pentanedione, 3-(2-propenyl)- - - 1.121 -
    11 23.521 ethanone, 1-(2, 6-dihydroxy-4-methoxyphenyl)- - - - 0.653
    12 30.988 ethanone, 1-(4-hydroxy-3, 5-dimethoxyphenyl)- 2.037 - - -
    total 5.217 6.757 7.892 22.423
    Aromatic
    13 8.714 phenol - - 5.118 -
    14 11.628 mequinol - - 9.199 -
    15 13.960 phenol, 4-ethyl- 5.217 7.861 20.792 22.102
    16 14.608 benzene, 1, 4-dimethoxy- - - 0.929 -
    17 17.008 phenol, 4-ethyl-2-methoxy- 3.446 7.561 10.645 10.172
    18 18.961 phenol, 2, 6-dimethoxy- 3.356 - 14.756 -
    19 18.973 phenol, 3, 4-dimethoxy- - 5.158 - 8.510
    total 12.019 20.580 61.439 40.784
    Esters, alcohol and aldehyde
    20 6.792 aprofene - - - 0.846
    21 8.732 carbonic acid, ethyl phenyl ester - - - 3.821
    22 12.870 5-ethylcyclopent-1-enecarboxaldehyde - - 0.593 1.128
    total 0.000 0.000 0.593 5.795
    N-containing compound
    23 4.193 1, 2, 4, 5-tetrazine - - 0.579 -
    24 9.687 1-pentanone, 1-(1H-imidazol-4-yl)- - - 0.472 -
    25 11.266 pyrazine, methoxy- - - 0.647 -
    26 19.371 L-4-hydroxy-3-methoxyphenylalanine - - 0.671 -
    27 32.494 aniline, N-(3’, 3’-diphenylspiro[fluorene-9, 2’-oxetan]-4’-ylidene)- - - 1.043 -
    28 36.148 N-acetylnorephedrine - - 0.582 -
    total 0.000 0.000 3.994 0.000
    Heterocyclic compound
    29 4.852 furfural 1.399 - - -
    30 20.778 3-methylbenzothiophene - - 0.682 -
    total 1.399 0.000 0.682 0.000
    Hydrocarbono
    31 3.609 toluene 73.052 - - -
    32 28.895 cyclohexene, 1, 5, 5-trimethyl-6-(2-propenylidene)- - - 0.638 -
    total 73.052 0.000 0.638 0.000
    下载: 导出CSV

    表  6  水相循环前后固体产物的元素分析和热值

    Table  6  Ultimate analysis of solid product with and without aqueous phase recirculation

    Name Number of recirculation Ultimate analysis wd/% Atomic ratio Carbon recovery/% QHHV/
    (MJ·kg-1)
    C H N S O H/C O/C
    Solid product 0 60.94 4.55 1.67 0.06 32.78 0.90 0.40 37.60 23.20
    1 61.31 4.45 1.75 0.01 32.48 0.87 0.40 48.60 23.21
    2 61.02 4.60 1.84 0.08 32.47 0.90 0.40 49.75 23.31
    3 61.74 4.70 1.80 0.07 31.68 0.91 0.39 46.13 23.82
    下载: 导出CSV
  • [1] 宋春财, 胡浩权.生物质秸秆在水中热化学液化研究[J].四川大学学报(工程科学版), 2002, 34(5):59-62. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx200205015

    SONG Chun-cai, HU Hao-quan. Thermochemical liquefaction of biomass in high pressure water[J]. J Sichuan Univ (Eng Sci Ed), 2002, 34(5):59-62. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx200205015
    [2] 卫洪建, 杨晴, 李佳硕, 杨海平, 陈汉平.中国农作物秸秆资源时空分布及其产率变化分析[J].可再生能源, 2019, 37(9):1265-1273. http://d.old.wanfangdata.com.cn/Periodical/ncny201909001

    WEI Hong-jian, YANG Qing, LI Jia-shuo, YANG Hai-ping, CHEN Han-ping. Analysis of spatiotemporal and density changes of crop straws resources in China[J]. Renewable Energy Resour, 2019, 37(9):1265-1273. http://d.old.wanfangdata.com.cn/Periodical/ncny201909001
    [3] 刘志斌, 张学勤.木质纤维素生物质催化转化为高附加值产品的研究进展[J].纤维素科学与技术, 2019, 27(3):77-82. http://d.old.wanfangdata.com.cn/Periodical/xwskxyjs201903011

    LIU Zhi-bin, ZHANG Xue-qin. Progress of lignocellulose biomass catalytic conversion to high added-value products[J]. J Cellul Sci Technol, 2019, 27(3):77-82. http://d.old.wanfangdata.com.cn/Periodical/xwskxyjs201903011
    [4] 姜洪涛, 李会泉, 张懿.生物质高压液化制生物原油研究进展[J].化工进展, 2006, 25(1):8-13. http://d.old.wanfangdata.com.cn/Periodical/hgjz200601002

    JIANG Hong-tao, LI Hui-quan, ZHANG Yi. Progress in liquefaction of biomass to bio-crude[J]. Chem Ind Eng Prog, 2006, 25(1):8-13. http://d.old.wanfangdata.com.cn/Periodical/hgjz200601002
    [5] KLEMMER M, MADSEN R B, HOULBERG K, MØRUP A J, CHRISTENSEN P S, BECKER J, GLASIUS M, IVERSEN B B. Effect of aqueous phase recycling in continuous hydrothermal liquefaction[J]. Ind Eng Chem Res, 2016, 55(48):12317-12325. http://cn.bing.com/academic/profile?id=c2f19ac30622475e1579a776a1f0a173&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 曲磊, 崔翔, 杨海平, 王贤华, 张文楠, 邵敬爱, 陈汉平.微藻水热液化制取生物油的研究进展[J].化工进展, 2018, 37(8):2962-2969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201808012

    QU Lei, CUI Xiang, YANG Hai-ping, WANG Xian-hua, ZHANG Wen-nan, SHAO Jing-ai, CHEN Han-ping. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chem Ind Eng Prog, 2018, 37(8):2962-2969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201808012
    [7] USMAN M, CHEN H, CHEN K, REN S, CLARK J H, FAN J, LUO G, ZHANG S. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production:A review[J]. Green Chem, 2019, 21(7):1553-1572. http://cn.bing.com/academic/profile?id=b0828a754e9e136121083883145ed95a&encoded=0&v=paper_preview&mkt=zh-cn
    [8] 彭文才.农作物秸秆水热液化过程及机理的研究[D].上海: 华东理工大学, 2011.

    PENG Wen-cai. Study on the process and mechanism of hydrothermal liquefaction of crop straws[D]. Shanghai: East China University of Science and Technology, 2011.
    [9] LI C, YANG X, ZHANG Z, ZHOU D, ZHANG L, ZHANG S, CHEN J. Hydrothermal liquefaction of desert shrub salix psammophila to high value-added chemicals and hydrochar with recycled processing water[J]. BioResources, 2013, 8(2):2981-2997. http://cn.bing.com/academic/profile?id=0e4a03939934d1fdf825432b6ad3e81e&encoded=0&v=paper_preview&mkt=zh-cn
    [10] ELLIOTT D C, BILLER P, ROSS A B, SCHMIDT A J, JONES S B. Hydrothermal liquefaction of biomass:Developments from batch to continuous process[J]. Bioresour Technol, 2015, 178:147-156. http://cn.bing.com/academic/profile?id=b48ea9f83ec46af8859961254e5d9e29&encoded=0&v=paper_preview&mkt=zh-cn
    [11] 李长军.沙柳水热转化制备生物油和生物碳的研究[D].上海: 复旦大学, 2013.

    LI Chang-jun. Hydrothermal conversion of desert shrub salix Psammophila to bio-oil and hydrochars[D]. Shanghai: Fudan University, 2013.
    [12] ZHU Z, ROSENDAHL L, TOOR S S, YU D, CHEN G. Hydrothermal liquefaction of barley straw to bio-crude oil:Effects of reaction temperature and aqueous phase recirculation[J]. Appl Energy, 2015, 137:183-192. http://cn.bing.com/academic/profile?id=35396cf22d9cf59824bfaffaa37478af&encoded=0&v=paper_preview&mkt=zh-cn
    [13] RAMOS-TERCERO E A, BERTUCCO A, BRILMAN D W F W. Process water recycle in hydrothermal liquefaction of microalgae to enhance bio-oil yield[J]. Energy Fuels, 2015, 29(4):2422-2430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79daf116425f8e52d4236b453bb9f6ac
    [14] HU Y, FENG S, BASSI A, XU C C. Improvement in bio-crude yield and quality through co-liquefaction of algal biomass and sawdust in ethanol-water mixed solvent and recycling of the aqueous by-product as a reaction medium[J]. Energy Convers Manage, 2018, 171:618-625. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0a3734190c76a7a7aa80335a10d72e2
    [15] PANISKO E, WIETSMA T, LEMMON T, ALBRECHT K, HOWE D. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks[J]. Biomass Bioenergy, 2015, 74:162-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c80cdb8256448fc53488fb7c9dff6010
    [16] GB/T 2677.10-1995.造纸原料综纤维素含量的测定[S].

    GB/T 2677.10-1995. Fibrous raw material determination of holocellulose[S].
    [17] VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci, 1991, 74(10):3583-3597. http://cn.bing.com/academic/profile?id=5b448bcfd7a32018d19d2006e09e43e6&encoded=0&v=paper_preview&mkt=zh-cn
    [18] 李艳美, 柏雪源, 易维明. 3种不同原料生物油主要化学成分的GC-MS分析[J].山东科学, 2016, 29(1):56-61. http://d.old.wanfangdata.com.cn/Periodical/sdkx201601010

    LI Yan-mei, BAI Xue-yuan, YI Wei-ming. GC-MS analysis of main chemical components for bio-oil from three different biomass materials[J]. Shandong Sci, 2016, 29(1):56-61. http://d.old.wanfangdata.com.cn/Periodical/sdkx201601010
    [19] YIN S, TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions[J]. Appl Energy, 2012, 92:234-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86b3783d543218b126d7d6cdd3db26ea
    [20] CHEN H, HE Z, ZHANG B, FENG H, KANDASAMY S, WANG B. Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of spirulina platensis, α-cellulose, and lignin[J]. Energy, 2019, 179:1103-1113. doi: 10.1016/j.energy.2019.04.184
    [21] 高英, 陈汉平, 汪君, 石韬, 杨海平, 王贤华.生物质水热液化和炭化率物特性研究[J].燃料化学学报, 2011, 39(12):893-900.

    GAO Ying, CHEN Han-ping, WANG Jun, SHI Tao, YANG Hai-ping. Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass[J]. J Fuel Chem Technol, 2011, 39(12):893-900.
    [22] ROSS A, JONES J, KUBACKI M, BRIDGEMAN T. Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresour Technol, 2008, 99(14):6494-6504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43d1e873b822c0ee3ac7e10a56a2c421
    [23] HU Y, FENG S, YUAN Z, XU C C, BASSI A. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae[J]. Bioresour Technol, 2017, 239:151-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=101406ada755eadd37460d4d045b115a
    [24] 朱哲.生物质水热液化制备生物油及其性质分析的研究[D].天津: 天津大学, 2014.

    ZHU Zhe. Study on hydrothermal liquefaction of biomass for bio-crude production and product characterization[D]. Tianjin: Tianjin University, 2014.
    [25] 胡见波, 杜泽学, 闵恩泽.生物质水热液化机理研究进展[J].石油炼制与化工, 2012, 43(4):87-92. http://d.old.wanfangdata.com.cn/Periodical/sylzyhg201204019

    HU Jian-bo, DU Ze-xue, MIN En-ze. Progress in research of reaction mechanism concerning hydrothermal liquefaction of biomass[J]. Pet Process Petrochem, 2012, 43(4):87-92. http://d.old.wanfangdata.com.cn/Periodical/sylzyhg201204019
    [26] ROSS A B, BILLER P, KUBACKI M L, LI H, LEA-LANGTON A, JONES J M. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010, 89(9):2234-2243. doi: 10.1016-j.fuel.2010.01.025/
    [27] XU D, SAVAGE P E. Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae[J]. Algal Res, 2014, 6:1-7. http://cn.bing.com/academic/profile?id=5426de7490f5dab8633ee0b20c88fcd8&encoded=0&v=paper_preview&mkt=zh-cn
    [28] ZHU Z, SI B, LU J, WATSON J, ZHANG Y, LIU Z. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresour Technol, 2017, 243:9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea11a90341a111c134be79f320c06e2c
    [29] 李润东, 张扬, 李秉硕, 刘合鑫, 开兴平, 烟征, 杨天华.玉米秸秆催化液化制备生物油实验研究[J].燃料化学学报, 2016, 44(1): 69-75.

    LI Run-dong, ZHANG Yang, LI Bing-suo, LIU He-xin, KAI Xing-ping, YAN Zheng, YANG Tian-hua. Hydrothermal catalytic liquefaction of corn stalk for preparation of bio-oil[J]. 2016, 44(1): 69-75.
    [30] 田纯焱.富营养化藻的特性与水热液化成油的研究[D].北京: 中国农业大学, 2015.

    TIAN Chun-yan. Characteristics of eutrophicated algae and biocrude oil production through hydrothermal liquefaction[D]. Beijing: China Agricultural University, 2015.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-02-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回